python 一行_一行 Python 代码搞定炫酷可视化

cf.set_config_file(offline=True)

然后我们需要按照上面的使用格式来操作,首先我们需要有个DataFrame,如果手头没啥数据,那可以先生成个随机数。cufflinks有一个专门生成随机数的方法,叫做datagen,用于生成不同维度的随机数据,比如下面。

lines线图

cf.datagen.lines(1,500).ta_plot(study='sma',periods=[13,21,55])

1)cufflinks使用datagen生成随机数;

2)figure定义为lines形式,数据为(1,500);

3)然后再用ta_plot绘制这一组时间序列,参数设置SMA展现三个不同周期的时序分析。

bcc214557a9645f0a85578e7ca48fc67.gif

box箱型图

还是与上面用法一样,一行代码解决。

cf.datagen.box(20).iplot(kind='box',legend=False)

fea3d52c4aac4b7ab48081bd49a43c49.gif

可以看到,x轴每个box都有对应的名称,这是因为cufflinks通过kind参数识别了box图形,自动为它生成的名字。如果我们只生成随机数,它是这样子的,默认生成100行的随机分布的数据,列数由自己选定。

486b2b92bf084abcab0f1050d4df04a7.jpeg

histogram直方图

cf.datagen.histogram(3).iplot(kind='histogram')

f200e1676c7f43cd970eab6525fa9c61.gif

和plotly一样,我们可以通过一些辅助的小工具框选或者lasso选择来区分和选定指定区域,只要一行代码。

当然了,除了随机数据,任何的其它dataframe数据框都可以,包括我们自己导入的数据。

histogram条形图

df=pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])df.iplot(kind='bar',barmode='stack')

0c8d7d36cd024c62b2f634d2bb47b809.gif

上面我们生成了一个(10,4)的dataframe数据框,名称分别是a,b,c,d。那么cufflinks将会根据iplot中的kind种类自动识别并绘制图形。参数设置为堆叠模式。

scatter散点图

df= pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])df.iplot(kind='scatter',mode='markers',colors=['orange','teal','blue','yellow'],size=10)

339602e20dfc4422aca5bb13b574c26d.gif

bubble气泡图

df.iplot(kind='bubble',x='a',y='b',size='c')

f06fdafb125441bfa89b8fc9a50ca0fb.gif

scatter matrix 散点矩阵图

df= pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])df.scatter_matrix

f1b035f73cb84430b42647e0e8e72808.gif

subplots 子图

df=cf.datagen.lines(4)df.iplot(subplots=True,shape=(4,1),shared_xaxes=True,vertical_spacing=.02,fill=True)

fe80f096ebc146b5ae488783c58058b8.gif

df.iplot(subplots=True,subplot_titles=True,legend=False)

340a6689475849d2b40cfea2b227813e.gif

再比如复杂一点的。

df=cf.datagen.bubble(10,50,mode='stocks')figs=cf.figures(df,[dict(kind='histogram',keys='x',color='blue'),dict(kind='scatter',mode='markers',x='x',y='y',size=5),dict(kind='scatter',mode='markers',x='x',y='y',size=5,color='teal')],asList=True)figs.append(cf.datagen.lines(1).figure(bestfit=True,colors=['blue'],bestfit_colors=['pink']))base_layout=cf.tools.get_base_layout(figs)sp=cf.subplots(figs,shape=(3,2),base_layout=base_layout,vertical_spacing=.15,horizontal_spacing=.03,specs=[[{'rowspan':2},{}],[None,{}],[{'colspan':2},None]],subplot_titles=['Histogram','Scatter 1','Scatter 2','Bestfit Line'])sp['layout'].update(showlegend=False)cf.iplot(sp)

2a1d314e42df4a6b86d2795c63baa8f2.gif

shapes 形状图

如果我们想在lines图上增加一些直线作为参考基准,这时候我们可以使用hlines的类型图。

df=cf.datagen.lines(3,columns=['a','b','c'])df.iplot(hline=[dict(y=-1,color='blue',width=3),dict(y=1,color='pink',dash='dash')])

551f482abcc2451ea840a587d3cbaa48.gif

或者是将某个区域标记出来,可以使用hspan类型。

df.iplot(hspan=[(-1,1),(2,5)])

40c570ab987b4f378b9723816c089819.gif

又或者是竖条的区域,可以用vspan类型。

df.iplot(vspan={'x0':'2015-02-15','x1':'2015-03-15','color':'teal','fill':True,'opacity':.4})

8fcb927d57ad4859b70001cedcc83f38.gif

如果对iplot中的参数不熟练,直接输入以下代码即可查询。

help(df.iplot)

总结

怎么样,是不是非常快捷方便?以上介绍是一般的可绘制类型,当然你可以根据自己的需求做出更多的可视化图形。如果是常规图形,一行即可实现。除此外,cufflinks还有强大的颜色管理功能,如果感兴趣可以自行学习。返回搜狐,查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值