闭环系统的零极点图判定稳定性_控制系统的稳性分析.ppt

控制系统的稳性分析

当特征方程的根均为负实根或实部为负的共轭复根时,系统稳定。先假设K的大致范围,利用roots()函数计算这些K值下特征方程的根,然后判断根的位置以确定系统稳定时K的取值范围。 程序如下: k=0:0.01:100; for index=1:10000, p=[2 15 27 k(index)+12 k(index)+1]; r=roots(p); if max(real(r))>0 break; end end sprintf('系统临界稳定时K值为:K=%7.4f\n',k(index)) 程序运行结果为: ans = 系统临界稳定时K值为:K= 90.1200 2.2.1 MATLAB图解判定的相关函数 2.2.2 MATLAB图解判定实例 对于给定系统G,pzmap(G)函数在无返回参数列表使用时,直接以图形化的方式绘制出系统所有特征根在S-复平面上的位置,所以判定系统是否稳定只需看一下系统所有极点在S-复平面上是否均位于虚轴左侧即可。这种图形化的方式更直观。 例4:已知一控制系统框图,如图2.3所示,试 判断系统的稳定性。 >> G1=tf([1 1],[2 1]); >> G2=tf([5],[2 3 1]); >> H1=tf(1,[2 1]); >> Gc=feedback(G2*G1,H1)  %得到闭环系统传递函数 Transfer function: 10 s^2 + 15 s + 5 ---------------------------------- 8 s^4 + 20 s^3 + 18 s^2 + 12 s + 6 >> pzmap(Gc) 分析:由于特征根全部在S-平面的左半平面, 所以此负反馈系统是稳定的。 例5:给定离散系统闭环传递函数分别为: 和 采样周期均为0.1秒。分别绘制系统零极点分 布图,并判定各系统稳定性。 >> num=[1 4.2 5.43]; >> den=[1 -2.7 2.5 2.43 -0.56]; >> Gc=tf(num,den,0.1) Transfer function: z^2 + 4.2 z + 5.43 --------------------------------------- z^4 - 2.7 z^3 + 2.5 z^2 + 2.43 z - 0.56 Sampling time: unspecified >> pzmap(Gc) 由上图可知,系统G在单位圆外有极点存 在,系统是不稳定的。 >> num=[0.68 5.43]; >> den=[1 -1.35 0.4 0.08 0.002]; >> G2=tf(num,den,0.1) Transfer function: 0.68 z + 5.43 ----------------------------------------- z^4 - 1.35 z^3 + 0.4 z^2 + 0.08 z + 0.002 Sampling time: 0.1 >> pzmap(G2) 由图可知,系统G2闭环传递函数的所有极点都位于单位圆内部,据此可知此闭环系统是稳定的。 MATLAB LTI Viewer是MATLAB为LTI(Linear Time Invariant)系统的分析提供的一个图形化工具。用它来可以很直观简便地分析控制系统的时域和频域响应。 用MATLAB LTI Viewer来观察闭环系统的零极点分布情况,需要首先在MATLAB中建立系统的闭环系统传递函数模型 例6:已知单位负反馈控制系统的开环传递函数为 用MATLAB LTI Viewer观察闭环系统的零极点分布情况,并判断此闭环系统的稳定性。 1.建立系统模型。 >> z=[-3]; >> p=[0 -2 -5]; >> k=3; >> G=zpk(z,p,k) Zero/pole/gain: 3 (s+3) ------------- s (s+2) (s+5) >> Gc=feedback(G,1) Zero/pole/gain: 3 (s+3) --------------------------------- (s+4.599) (s^2 + 2.401s + 1.957) 2.打开LTI Viewer。在命令窗口输入: >> ltivie

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页