之前写过一篇电影数据分析的文章”豆瓣13万电影数据统计与分析“,引起了一些读者的关注,并且在后台咨询我是否可以分享下源码。为了满足大家的需要,我在五一期间将源码略作整理了下,并从中筛选了几个绘图源码在这里分享给大家,如有疑问,可在评论区留言。特别说明下,文中分析的数据来自电影数据集Moviedata-10M中的movies.csv文件,需要的童鞋可以按照官方的说明进行下载即可。
准备工作
在进行源码分享之前,这里先说说我们的运行环境吧,我是使用jupyter进行实验的(强烈推荐),python 3.6版本,依赖的相关库如下:
pandas
matplotlib
seaborn
numpy
WordCloud
imageio
squarify
如果对上面的库不了解或者不会安装的,请自行查阅,这里就不一一细说了。
数据加载
由于文件是csv文件,所以加载数据只需要使用python里面的pandas库即可,采用pandas中的read_csv就可以将csv中的数据加载到内存中,代码如下:
1
2
3
4import csv
import pandas as pd
import random
movies = pd.read_csv("../data/movies.csv", encoding="utf-8")
统计分析
在豆瓣13万电影数据统计与分析一文,我从不同的维度对电影数据进行了分析,在这里不会将全部的源码分享出来,但是会将核心内容贴出来。
按上映年份统计电影
首先导入相关依赖库,主要是matplotlib,如下:
1
2
3import matplotlib.pyplot as plt
import matplotlib
matplotlib.matplotlib_fname()
下面这几行代码是为了解决图表中的中文乱码问题,仅供参考:
1
2
3
4
5
6
7#解决matplotlib 乱码
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['font.family']='sans-serif'
#解决负号'-'显示为方块的问题
matplotlib.rcParams['axes.unicode_minus'] = False
from matplotlib.font_manager import _rebuild
_rebuild()
在绘制图表之前,我们需要对数据进行处理,构造我们需要的数据格式:
1
2
3
4
5
6
7
8
9
10#如果year字段为空,就从release_date进行截取
def map_year(x):
year = x["year"]
if year == 0:
year = str(x["release_date"]).split("-")[0]
return str(year)
movies["year2"] = movies.apply(lambda x: map_year(x), axis=1)
#获取2020年之前上映的电影
movies = movies[movies["year2"]
得到2020年之前的电影之后,我们再分组统计每年上映的电影数量
1
2
3year_grp = movies.groupby("year2").size().reset_index(name="num") \
.sort_values(by="year2", ascending=True)
year_grp = year_grp.rename(columns={"year2":"year"})
接着,按照年份和上映的电影量进行绘图,首先分享下散点图的绘制方法,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18import seaborn as sns
#散点图
def draw_stripplot(df, df_x, df_y, title="Title", ylabel="Y", savepath="defalt.png"):
# draw stripplot start
fig, ax = plt.subplots(figsize=(20,10), dpi= 80)
sns.stripplot(df_x, df_y, jitter=0.25, size=8, ax=ax, linewidth=.5)
# decoration
plt.gca().set_xticklabels(df_x, rotation=90, horizontalalignment= 'right')
plt.title(title, fontsize=16)
plt.ylabel(ylabel)
plt.savefig(savepath)
plt.show()
draw_stripplot(year_grp, year_grp.year, year_grp.num,
title="Number Of Movies Released Each Year(1873-2019)",
ylabel='# Number',
savepath="result/movies_number_of_each_year_stripplot.png")
draw_stripplot方法是可以共用的,如果其他的聚合数据生成了,也可以调用上面的方法。得到的图表如下所示:
Fig 1.每年上映的电影数(趋势图)
按评分统计电影
首先分组统计出每个评分的电影数量
1
2
3df = movies.groupby('douban_score').size().reset_index(name='counts')
df = df[df["douban_score"]>0]
df["douban_score"] = df.douban_score.astype("str")
采用movies[movies["douban_score"] > 0]["douban_score"].mean()可以统计出电影的平均得分为6.63。
接着编写柱状图绘制函数,代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22#柱状图
def draw_barplot(df, df_x, df_y, title="Title", ylabel="# Y",
savepath="default.png", fontsize=5, x_fontsize=10):
all_colors = list(plt.cm.colors.cnames.keys())
random.seed(100)
c = random.choices(all_colors, k=df_x.shape[0])
# Plot Bars柱状
plt.figure(figsize=(20,10), dpi= 200)
plt.bar(df_x, df_y, color=c, width=.5)
for i, val in enumerate(df_y.values):
plt.text(i, val, int(val), horizontalalignment='center',
verticalalignment='bottom',
fontdict={'fontweight':200, 'size':fontsize})
# Decoration
plt.gca().set_xticklabels(df_x, rotation=90, horizontalalignment= 'right',
fontdict={"size":x_fontsize})
plt.title(title, fontsize=16)
plt.ylabel(ylabel)
plt.savefig(savepath)
plt.show()
将数据采用上面别写函数进行渲染:
1
2
3draw_barplot(df, df.douban_score, df.counts,
title="Movie Statistics For Each Score",
ylabel='# Score', savepath="result/movie_stat_by_score.png", fontsize=10)
得到的柱状图如下所示:
Fig 2.各个评分下的电影数统计
按照国家进行统计
首先根据国家进行聚合,
1
2
3
4
5movies_regions = movies
movies_regions["regions"] = movies_regions.regions \
.apply(lambda x: x.split("/")[0].split(" ")[0].strip())
df = movies_regions.groupby('regions').size().reset_index(name='counts')
df = df[df["regions"]!=""].sort_values(by=["counts"], ascending=False)[:50]
然后调用draw_barplot函数即可:
1
2
3draw_barplot(df, df.regions, df.counts,
title="Movie Statistics For Each Region", ylabel='# Number',
savepath="result/movies_stat_by_regions.png", fontsize=8,x_fontsize=12)
结果图如下:
Fig 3.按发行地域统计电影数(Top 50的发行地域)
按语言进行统计
数据构建
1
2
3
4
5
6
7df = movies.groupby('languages').size().reset_index(name='counts')
df = df[df["languages"]!=""]
df = movies.languages.apply(lambda x: x.split("/")[-1].split(" ")[0]) \
.reset_index(name="languages").drop(columns="id")
df = df.groupby("languages").size().reset_index(name='counts')
df = df[df["languages"]!=""]
df = df.sort_values(by=["counts"], ascending=False)[:20]
绘制饼状图,并进行渲染:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38import matplotlib.pyplot as plt
import numpy as np
def draw_pieplot(df, df_x, df_y,
title="Title",
subtitle="subtitle",
savepath="default.png"):
# Draw Plot
fig, ax = plt.subplots(figsize=(12, 7), subplot_kw=dict(aspect="equal"), dpi= 80)
data = df_y
categories = df_x
explode = np.zeros(df_x.shape[0])
explode[3] = 0.1
def func(pct, allvals):
absolute = int(pct/100.*np.sum(allvals))
return "{:.1f}% ({:d} )".format(pct, absolute)
wedges, texts, autotexts = ax.pie(data,
autopct=lambda pct: func(pct, data),
textprops=dict(color="w"),
colors=plt.cm.Dark2.colors,
startangle=140)
# Decoration
ax.legend(wedges, categories,
title=subtitle, loc="center left",
bbox_to_anchor=(1, 0, 0.5, 1))
plt.setp(autotexts, size=10, weight=700)
ax.set_title(title)
plt.savefig(savepath)
plt.show()
draw_pieplot(df, df.languages, df.counts,
title="Statistics By Languages: Pie Chart",
subtitle="Languages",
savepath="result/movie_language_stat_pieplot.png")
结果图如下:
Fig 4.按语言统计电影数
对中国的电影进行分析
同理,首先构造数据格式:
1
2
3
4
5
6
7
8
9movies_china = movies[movies.regions.str.startswith("中国") | \
movies.regions.str.startswith("香港") | \
movies.regions.str.startswith("台湾") | \
movies.regions.str.startswith("澳门")]
df = movies_china.reset_index().groupby('year').size().reset_index(name="counts")
df = df[df["year"]!=""][df["year"]!=0]
df = df.sort_values(by="year", ascending=True)
#df["counts"] = df.counts.astype("str")
接着绘制线性趋势图:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26def draw_plot_liner2(df, df_x, df_y,
x_name,
y_name,
title="Title",
ylabel="Y",
savepath="defalt.png"):
# Draw Plot - liner
plt.figure(figsize=(16,10), dpi= 80)
plt.plot(x_name, y_name, data=df, color='tab:red')
plt.yticks(fontsize=12, alpha=.7)
plt.title(title, fontsize=22)
plt.ylabel(ylabel)
plt.grid(axis='both', alpha=.3)
# Remove borders
plt.gca().spines["top"].set_alpha(0.0)
plt.gca().spines["bottom"].set_alpha(0.3)
plt.gca().spines["right"].set_alpha(0.0)
#plt.gca().spines["left"].set_alpha(0.3)
plt.savefig(savepath)
plt.show()
draw_plot_liner2(df, df.year, df.counts,'year','counts',
title="Statistics of Movie_China For Each Year",
ylabel='# Number', savepath="result//movies_china_each_year.png")
最后得到的趋势图如下:
Fig 5.中国每年的电影数量统计
如果需要渲染多个国家进行对比,只需要将多个国家的数据进行聚合然后一个个绘制到图上即可。
词云
电影类型词云
如果想要绘制类型词云,需要上面提到的WordCloud库。
1
2
3from wordcloud import WordCloud
import collections
import imageio
当具备这些之后,我们首先要准备数据,取出电影标签,然后进行词频统计,
1
2
3
4
5object_list = movies.genres.tolist()
word_list = []
for words in object_list:
word_list.extend(words.split("/"))
word_counts = collections.Counter(word_list) # 对分词做词频统计
接着调用WordCloud库进行分析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16b_mask = imageio.imread("./data/bg_my.jpeg") #如果运行到这里找不到图片,请自行替换图片即可
wc = WordCloud(font_path="Hiragino Sans GB.ttc", # 字体
background_color = 'white', # 背景色
max_words = 2000, # 最大显示单词数
#width=1000,
#height=500,
max_font_size = 160, # 频率最大单词字体大小
mask=b_mask
#stopwords = stopwords # 过滤噪声词
).generate_from_frequencies(word_counts)
wc.to_file("genres_cloud.png")
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.show()
如果词库比较大的话,时间需要久一点,最后得到的图片如下:
Fig 6.电影类型词云
标签词云也是类似的,只需hexo要重新渲染下数据即可。
结束语
文章共介绍了散点图、线性图、柱状图、饼状图、词云这几个核心图表的绘制,只要下载了相关库,那么构造出相应的数据格式之后,代码可以直接运行,后续我会考虑以jupyter文件分享出来,大家可以关注下我的公众号:【斗码小院】,相关内容会第一时间发布到公众号中,如果相关问题,也可以在公众号的“关于小院”一栏进行留言。