pytorch指定用多张显卡训练_Pytorch中多GPU训练指北

本文介绍了PyTorch中使用DataParallel和DistributedDataParallel进行多GPU训练的方法,包括如何指定设备,以及单卡与多卡训练的对比。实验表明,尽管多卡训练在某些阶段速度较慢,但在训练后期能达到与单卡相同的收敛效果。同时,文章提醒注意GPU数量应为偶数,选择合适数据集和检查内存是否足够。
摘要由CSDN通过智能技术生成

前言

在数据越来越多的时代,随着模型规模参数的增多,以及数据量的不断提升,使用多GPU去训练是不可避免的事情。Pytorch在0.4.0及以后的版本中已经提供了多GPU训练的方式,本文简单讲解下使用Pytorch多GPU训练的方式以及一些注意的地方。

这里我们谈论的是单主机多GPUs训练,与分布式训练不同,我们采用的主要Pytorch功能函数为DataParallel而不是DistributedParallel,后者为多主机多GPUs的训练方式,但是在实际任务中,两种使用方式也存在一部分交集。

使用方式

使用多卡训练的方式有很多,当然前提是我们的设备中存在两个及以上的GPU:使用命令nvidia-smi查看当前Ubuntu平台的GPU数量(Windows平台类似),其中每个GPU被编上了序号:[0,1]:

在我们设备中确实存在多卡的条件下,最简单的方法是直接使用torch.nn.DataParallel将你的模型wrap一下即可:

net=torch.nn.DataParallel(model)

这时,默认所有存在的显卡都会被使用。

如果我们机子中有很多显卡(例如我们有八张显卡),但我们只想使用0、1、2号显卡,那么我们可以:

net=torch.nn.DataParallel(model,device_ids=[0,1,2])

或者这样:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>