d3js绘制y坐标轴_[原创]Day2.零基础如何绘制数据可视化图形

本文介绍了数据可视化的基础语法,重点讲解了d3js和Matplotlib绘制折线图、散点图、条形图、直方图和饼图的方法。内容包括Matplotlib的基本使用,如设置图像大小、保存图像、设置坐标轴和刻度,以及图像结构的三层解析。此外,还探讨了一图多线、一图多个坐标系以及设置坐标轴范围的概念。

5f0d3ced4f187c83d983532c20e9062c.gif

数据可视化的基础语法

可视化主要是以图像来展示数据间的关系,

常见的图形种类有

  • 折线图,散点图,条形图,直方图,饼图

  • 此外在接下来课程中还会用到箱线图,热力图,蜘蛛图,表示二元变量分布和成对关系的视图。

今天我们要来了解折线图,散点图,条形图,直方图,饼图和器特点。认识Matplotlib的图像结构,并以Matplotlib绘制折线图为例来掌握设置辅助显示层;此外,用Matplotlob设置辅助显示层,内容还增添拓展部份,平时用到的不是很多,作为了解即可。

常见图像

折线图

  • 以折线的上升或下降来表示统计数量的增减变化的统计图

    特点:能够显示数据的变化趋势,反映事物的变化情况。(变化)

2ccd70f56fdbed258317fce728666ba6.png

散点图(Scatter)

  • 用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。

    特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

30310e3c27d2e7b972c29eb3aa7360c7.png

条形图

  • 排列在工作表的列或行中的数据可以绘制到柱状图中。

    特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比)

    9d5e534e10a735fb6292342f9cd4a4df.png

直方图(Histogram)

  • 由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据范围,纵轴表示分布情况。

    特点:绘制连续性的数据展示一组或者多组数据的分布状况(统计)

    4137f1a52d830278dc26b84c04ceaf7e.png

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值