
数据可视化的基础语法
可视化主要是以图像来展示数据间的关系,
常见的图形种类有
折线图,散点图,条形图,直方图,饼图。
此外在接下来课程中还会用到箱线图,热力图,蜘蛛图,表示二元变量分布和成对关系的视图。
今天我们要来了解折线图,散点图,条形图,直方图,饼图和器特点。认识Matplotlib的图像结构,并以Matplotlib绘制折线图为例来掌握设置辅助显示层;此外,用Matplotlob设置辅助显示层,内容还增添拓展部份,平时用到的不是很多,作为了解即可。
常见图像
折线图
以折线的上升或下降来表示统计数量的增减变化的统计图
特点:能够显示数据的变化趋势,反映事物的变化情况。(变化)

散点图(Scatter)
用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。
特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)

条形图
排列在工作表的列或行中的数据可以绘制到柱状图中。
特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比)

直方图(Histogram)
由一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据范围,纵轴表示分布情况。
特点:绘制连续性的数据展示一组或者多组数据的分布状况(统计)


本文介绍了数据可视化的基础语法,重点讲解了d3js和Matplotlib绘制折线图、散点图、条形图、直方图和饼图的方法。内容包括Matplotlib的基本使用,如设置图像大小、保存图像、设置坐标轴和刻度,以及图像结构的三层解析。此外,还探讨了一图多线、一图多个坐标系以及设置坐标轴范围的概念。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



