yolov3安卓实现_yolov3-tiny:Android端基于darknet2ncnn之实现一

经过一段时间的反复摸索,终于在Android端基于darknet2ncnn的框架实现了yolov3-tiny,一张图片的检测时间为500ms以内,基本满足需求,下面会进一步优化,接下来我将自己的实现过程和大家分享下,我将分几个部分分享,同时也欢迎大家关注我的微信公众号“机器视觉交流社”或个人微信号“LuckyZiXiao”进行交流。

一、下载并编译darknet2ncnn

2、初始化ncnn和darknet

cd darknet2ncnn

git submodule init

git submodule update

3、构建darknet

cd darknet

make -j8

rm libdarknet.so

4、构建ncnn

cd ncnn

mkdir build

cmake..

make-j8

make install

5、构建darknet2ncnn

#workspacedarknet2ncnn

cd ../../

make -j8

6、yolov3-tiny模型转换及验证

#workspacedarknet2ncnn

注意:这里已经得到了ncnn模型需要的网络和权重文件的格式。

./darknet2ncnndata/yolov3-tiny.cfg data/yolov3-tiny.weights example/zoo/yolov3-tiny.param example/zoo/yolov3-tiny.bin

7、构建example

#workspacedarknet2ncnn

cd example

make -j4

8、运行yolov3-tiny

#workspaceexample

make yolov3-tiny.coco

至此PC端的验证已经结束。下面接着分享Android端的实现过程。

二、编译Androoid端ncnn库文件

主要步骤和之前编译pc端的库一样,只是编译需要的cmkefile不一样。

#workspacencnn

mkdir -p build-android-armv7

cd build-android-armv7

cmake -DCMAKE_TOOLCHAIN_FILE=/home/lw/Android/Sdk/

ndk-bundle/build/cmake/android.toolchain.cmake \

-DANDROID_ABI="armeabi-v7a" \

-DANDROID_ARM_NEON=ON ..

make -j4

make install

执行完上述命令后,可以看到在build-android-armv7文件夹下生成了install文件夹,它就是移植到Android端需要的库文件。

今天的分享就到这里,接下来会大家继续分享构建运行yolov3-tiny的Android工程,以及运用cmakefile文件编译其相应的库。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值