
前言
全民机器学习的时代,愈发感到数学的重要性。不仅仅是机器学习,再工程技术领域的各个方面,数学不行,各种算法深入看进去都觉得很自卑。曾经为了寻找好的现代资料各种网上搜索,最后决定用MIT的最经典线性代数课来咬牙痛补一下我的线性代数知识。我智商正常,211硕士毕业,不笨也不傻,我就不信自己数学就那么渣!!
资源
(MIT公开课网站(OCW)地址:
https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/resource-index/ocw.mit.edu如果之前线性代数一点基础都没有。在正式学习之前,强推看一波
3B1B的线性代数的本质视频:
哔哩哔哩 ( ゜- ゜)つロ 乾杯~ Bilibilispace.bilibili.com我的课程对应资料git仓库:
https://github.com/yandld/MIT_notes_linear_algebragithub.com课程一共分为三大部分,每一个讲课视频配有习题和习题解答视频,顺序基本和教科书一致(教科书也在git仓库里)。实际上就是MIT的本科线性代数课(课号18.06或者18.06SC)。这个课程堪称系统学习线性代数最经典的课程。 别找了,最经典。没有之一!
除此之外还有其他一些资源着力推荐:
- 互动线性代数:https://textbooks.math.gatech.edu/ila/
- 沉浸线性代数: http://immersivemath.com/ila/ch05_gausselim/ch05.html
- 《线性代数及其应用》第五版(更侧重工程应用),有中文翻译版本,但是我基本是英文看过来。也是非常经典,和MIT这课的教材:Introdcution To Linear Algebra(更侧重数学,理论) 并称现代入门最好的两本教材,笔记里也会穿插这本书的内容
笔记目录
第一部 - 四大子空间
- MIT线性代数笔记1.1上(现代的几何解释)
- MIT线性代数笔记1.1下(综述)
- MIT线性代数笔记1.2(矩阵消元)
- MIT线性代数笔记1.3(矩阵乘法,逆矩阵)
- MIT线性代数笔记1.4(LU分解)
- MIT线性代数笔记1.5(转置,置换,向量空间)
- MIT线性代数笔记1.6(列空间和零空间)
- MIT线性代数笔记1.7-1.8(Ax=0, Ax=b)
- MIT线性代数笔记1.9(线性无关,基,维度)
- MIT线性代数笔记1.10(四大子空间)
- MIT线性代数笔记1.13&1.14(第一部分复习)
第二部 - 正交,最小二乘与特征值
- MIT线性代数笔记2.1/2.2(正交,正交投影)
- MIT线性代数笔记2.3(最小二乘)
- MIT线性代数笔记2.4(施密特正交化)
- MIT线性代数笔记2.5/2.6(行列式)
- MIT线性代数笔记2.7(克莱姆法则,体积)
- MIT线性代数笔记2.8(特征值和特征向量)
- MIT线性代数笔记2.9(矩阵对角化,差分方程)
- MIT线性代数笔记2.10(微分方程和矩阵指数)
- MIT线性代数笔记2.11(马尔科夫矩阵,傅里叶级数)
- MIT线性代数笔记2.12(第二阶段复习)
第三部-对称,正定,SVD和一些工程应用
- MIT线性代数笔记3.1(对称矩阵,正定矩阵)
- MIT线性代数笔记3.2(复数矩阵 快速傅里叶变换)
- MIT线性代数笔记3.3(正定矩阵,最小值)
- MIT线性代数笔记3.4(相似矩阵,Jordan型)
- MIT线性代数笔记3.5(SVD分解)
- MIT线性代数笔记3.6(线性变换)
- MIT线性代数笔记3.7(图像压缩,换基)
- MIT 2011线性代数笔记3.8(左逆右逆,伪逆)
- MIT 2011线性代数笔记3.9-第三阶段复习
期末总复习
- MIT 2011线性代数笔记4.0-期末总复习