线性代数及其应用_MIT线性代数笔记-前言

本文介绍了作者通过MIT的线性代数公开课进行自我提升的经历,分享了课程资源链接,包括3B1B的线性代数视频、互动线性代数和沉浸线性代数等辅助学习资料。笔记详细覆盖了线性代数的四大子空间、正交投影、最小二乘、特征值等多个核心概念,并提供了完整的课程复习指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

b840cfc0fa8b6eebbe2bf8c3e02ccea6.png

前言

全民机器学习的时代,愈发感到数学的重要性。不仅仅是机器学习,再工程技术领域的各个方面,数学不行,各种算法深入看进去都觉得很自卑。曾经为了寻找好的现代资料各种网上搜索,最后决定用MIT的最经典线性代数课来咬牙痛补一下我的线性代数知识。我智商正常,211硕士毕业,不笨也不傻,我就不信自己数学就那么渣!!

资源

(MIT公开课网站(OCW)地址:

https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/resource-index/​ocw.mit.edu

如果之前线性代数一点基础都没有。在正式学习之前,强推看一波

3B1B的线性代数的本质视频:

哔哩哔哩 ( ゜- ゜)つロ 乾杯~ Bilibili​space.bilibili.com

我的课程对应资料git仓库:

https://github.com/yandld/MIT_notes_linear_algebra​github.com

课程一共分为三大部分,每一个讲课视频配有习题和习题解答视频,顺序基本和教科书一致(教科书也在git仓库里)。实际上就是MIT的本科线性代数课(课号18.06或者18.06SC)。这个课程堪称系统学习线性代数最经典的课程。 别找了,最经典。没有之一

除此之外还有其他一些资源着力推荐:

  • 互动线性代数:https://textbooks.math.gatech.edu/ila/
  • 沉浸线性代数: http://immersivemath.com/ila/ch05_gausselim/ch05.html
  • 《线性代数及其应用》第五版(更侧重工程应用),有中文翻译版本,但是我基本是英文看过来。也是非常经典,和MIT这课的教材:Introdcution To Linear Algebra(更侧重数学,理论) 并称现代入门最好的两本教材,笔记里也会穿插这本书的内容

笔记目录

第一部 - 四大子空间

  • MIT线性代数笔记1.1上(现代的几何解释)
  • MIT线性代数笔记1.1下(综述)
  • MIT线性代数笔记1.2(矩阵消元)
  • MIT线性代数笔记1.3(矩阵乘法,逆矩阵)
  • MIT线性代数笔记1.4(LU分解)
  • MIT线性代数笔记1.5(转置,置换,向量空间)
  • MIT线性代数笔记1.6(列空间和零空间)
  • MIT线性代数笔记1.7-1.8(Ax=0, Ax=b)
  • MIT线性代数笔记1.9(线性无关,基,维度)
  • MIT线性代数笔记1.10(四大子空间)
  • MIT线性代数笔记1.13&1.14(第一部分复习)

第二部 - 正交,最小二乘与特征值

  • MIT线性代数笔记2.1/2.2(正交,正交投影)
  • MIT线性代数笔记2.3(最小二乘)
  • MIT线性代数笔记2.4(施密特正交化)
  • MIT线性代数笔记2.5/2.6(行列式)
  • MIT线性代数笔记2.7(克莱姆法则,体积)
  • MIT线性代数笔记2.8(特征值和特征向量)
  • MIT线性代数笔记2.9(矩阵对角化,差分方程)
  • MIT线性代数笔记2.10(微分方程和矩阵指数)
  • MIT线性代数笔记2.11(马尔科夫矩阵,傅里叶级数)
  • MIT线性代数笔记2.12(第二阶段复习)

第三部-对称,正定,SVD和一些工程应用

  • MIT线性代数笔记3.1(对称矩阵,正定矩阵)
  • MIT线性代数笔记3.2(复数矩阵 快速傅里叶变换)
  • MIT线性代数笔记3.3(正定矩阵,最小值)
  • MIT线性代数笔记3.4(相似矩阵,Jordan型)
  • MIT线性代数笔记3.5(SVD分解)
  • MIT线性代数笔记3.6(线性变换)
  • MIT线性代数笔记3.7(图像压缩,换基)
  • MIT 2011线性代数笔记3.8(左逆右逆,伪逆)
  • MIT 2011线性代数笔记3.9-第三阶段复习

期末总复习

  • ​MIT 2011线性代数笔记4.0-期末总复习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值