判定两个tensor维度相同_Pytorch | Pytorch中自带的数据计算包——Tensor

本文介绍了PyTorch中Tensor的常用操作,包括尺寸查询、reshape、索引、运算及类型转换。详细阐述了size()、shape、view、numel、squeeze和unsqueeze等方法的用法,并举例说明了加减乘除、矩阵点乘、类型转换和设备迁移的过程。此外,还提到了Tensor与Numpy的异同,强调了Tensor在提升计算效率上的重要作用。
摘要由CSDN通过智能技术生成

点击上方蓝字,关注并星标,和我一起学技术。

a8625c61517b41db9ce20d1350940514.png

今天是Pytorch专题的第二篇,我们继续来了解一下Pytorch中Tensor的用法。

上一篇文章当中我们简单介绍了一下如何创建一个Tensor,今天我们继续深入Tensor的其他用法

tensor操作

size()和shape

我们可以用size()函数或者直接调用tensor当中的shape属性获取一个tensor的大小,这两者是等价的,一般情况下我们用前者多一些。

2e40d1522aaffef61baef4f90845a0c5.png
view

我们可以通过view改变一个tensor的shape,它会根据我们指定的shape返回一个新的tensor

a2daf34dfa88e06a1d2b48433cc51f00.png

需要注意的是,view返回的是原数据的一个引用,也就是说我们改变原数据,view出来的结果会同样发生变化。

dea80fa59beade07175a493318b9bdf5.png

在上面这个例子当中,我们把原tensor x中的[0, 1]的位置修改成了2,我们print y会发现y当中的元素同样发生了变化。

numel

我们可以用numel获取tenosr当中元素的数量:

7ff428cbe529b799a1ec5140e33f068b.png

squeeze和unsque

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值