r语言 fread函数参数_R语言数据处理 | 实战案例:机器学习

本文介绍了在人工智能时代,R语言作为机器学习的重要工具,结合fread函数进行数据处理的实战案例,展示如何在具体场景中应用机器学习进行知识发现。
摘要由CSDN通过智能技术生成

ba21dc9a38f257e24eaf7d60e67dc798.png

人工智能时代,学术界、工业界都希望能够利用积累的数据进行深入挖掘,从而发现新的知识。

机器学习是进行知识发现的重要手段,而R语言,是最适合用来做机器学习的计算机语言之一。下面我们将对机器学习进行简要的介绍,并用一个实际的案例来讲述机器学习在具体场景中的应用。

1

机器学习概述 如果要了解机器学习是什么,首先要知道人类学习的时候在学什么。 学习就是通过思考、研究、阅读等途径获得知识或技能的过程,有了这些知识,在遇到新的问题时就能够从容应对。 人类之所以能够超越其他动物成为食物链的最顶端,很大程度上是因为人类擅长计算和思考,而计算机的出现,将人类从繁冗的计算过程中解放出来。 机器学习是一门多领域交叉学科,专门研究计算机如何模拟和实现人类的学习行为,以获得新的知识和技能。例如,人类可以通过学习中英文的对应关系,从而对两种文字进行相互翻译。现在机器也能够做到这一点,甚至比人类做得更好,这就是机器学习的威力。 综上,机器学习就是利用计算机模拟人的学习行为,自动化地组织知识结构,不断改善自身性能。

2

为什么要做机器学习
为什么要做机器学习?需要从两方面回答这个问题: 第一,为什么要学习;第二,为什么要用机器来学习? 为什么要学习?这好像不是一个技术性的问题,更像是一个哲学问题。但是要想学好机器学习,搞懂这些根本问题是有必要的,笔者试图用最直观的思考来回答这个问题。 学习的理由就是走过的弯路不能白走。这个世界上很少有人能够在第一次就成功完成所有事情,恰恰相反,大部分人是在多次失败之后才能顺利地完成任务,而从第一次失败到最后一次成功的过程,就是学习。善于总结的人被认为具有更强的学习能力,他们能够从自己和别人的失败中汲取教训,因此当有新的机遇出现时,能够很好地把握住。虽然偶然成功了,但如果不去总结成功的原因,那么在下一次机遇来临之时可能就无法抓住。学习的过程就是试错的过程,不断总结、提炼,并从中获得新知识,应对未来的挑战。 为什么要用机器来学习呢?因为机器与人相比具有自身的优越性。机器不会疲惫,工作效率高,出错的概率更小。更重要的是,在数据密集型的探索中,机器能够同时处理大规模的数据,如果这要用人工进行计算是无法想象的。也正是因为有了机器,很多统计方法才能够得到应用,如蒙特卡罗模拟。有了机器学习,我们就能够更加顺利地利用过往的历史数据来建立模型,从而更加了解事物之间的联系,并对未来的情况做出精准的预测。

3

如何入门机器学习 在入门机器学习之前,我们必须问自己,为什么要学机器学习。学会了之后,我们究竟想做什么?究竟是做一个算法开发者还是工具的应用者? 如果这些问题没想明白的话,学习过程将会非常“别扭”。 以笔者自己为例,笔者不是学习计算机或统计学出身的,而笔者广泛学习计算机和应用统计知识只是为了解决遇到的科学研究问题和业务问题,因此在学习机器学习算法时就会有所侧重。笔者关心的问题包括算法的输入是什么,输出是什么,算法的前提假设是什么,什么时候应该用这种算法,得到的结果如何解释,如何把这种算法运用到实际的业务场景或科学研究中,怎么用现有的计算机工具来对这种算法进行实现? 相对来说,笔者不会纠结于算法的推理过程,因为即使真的看懂了这些算法的内部结构,也不会对实际运用有太大的帮助。有的时候会“挖”一下算法的机制,那仅仅是因为函数参数的设置必须要对这个算法有一定的认识才能够操作。而R语言之所以如此成功,就是因为它让众多不懂算法深层推导的用户也能够轻而易举地利用这些工具来构建自己的模型。这样一来,数据分析的门槛大大降低,而它的价值也能够在最大限度上被发挥出来,应用到各行各业。 那么机器学习的原理就不重要了吗?当然不是。入门阶段我们也许能够先侧重表层的应用,但是将来在实际应用中,当遇到一些现成算法无法解决的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值