关系代数的自然连接符号_小学数学从算术思维到代数思维!发展中其实充满非连续性...

小学阶段,从算术思维到代数思维是学生数学思维的重大飞跃,当然这个过程并不是很多家长认为顺其自然的连续,也不是一个突变的过程;而是要从小学中、高年级开始到初中阶段逐步发展的。

算术是对于数字的操作,代数是对于符号的操作。和小学的数概念系统一样,代数也需要符号概念系统的建立,用字母表示数,用符号表示运算法则、归纳运算性质、各种公式等,其实是将知识进行一般化总结。

代数思维

代数是符号的语言,那么学习代数首先要对字母表示数理解和充分认识。

1f3f40997b568ab3958b47e367dc317d.png

1,字母可以表示人物;

2,字母可以表示品牌;

3,字母还可以表示具体的数(罗马数字);

4,字母可以表示任意的数,变化的数,未知的数。

作为标志或符号,字母可以表示很多实物,可以说万物皆数,字母也是表示万物,这是代数学习的基础。

小学阶段课内一直启蒙字母代数,符号代数,比如低年级的图文算式,四年级的运算律,五年级多边形面积公式推导等等。

字母表示数可以研究一般规律,列式更简洁!

字母可以取不同的数值,是含有字母的式子呈现的多种具体情况,采用字母比文字表述更为准确、简洁。

9966aebc417511e1e924173c8f089f34.png
79fc116cea6cf2f83012954055f53879.png

从一般性的原理推出特殊情况的结论是一种逻辑思维方法,是基础的解决问题的能力,也是代数思维的先决条件。同样是假设思维,代数建立在符号基础上,脱离具体实体场景,这个转变往往是需要在日常教学中多引导。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页