基于水色图像的水质评价_基于水色图像的水质评价

本文介绍了如何使用Python进行水色图像的预处理,通过将图像划分为RGB三个颜色通道并计算一至三阶颜色矩来提取特征。接着,详细讲述了如何自定义函数处理所有图片,计算颜色矩并保存数据。最后,讨论了模型训练与预测的过程,包括选择分类算法、数据划分、模型训练和评估。
摘要由CSDN通过智能技术生成

395faa7b3d5a1ecc6f2215c18337add1.png

035998cb562872fcf406cf456b91cffa.png

数据探索与预处理

任务1.1 读取一张图片数据并用Python查看图片,截取图像的有效区域

任务1.2 将图片数据划分为RGB三个颜色通道,分别将三个颜色通道的图片数据转换为像素值矩阵

任务1.3 了解水质图像特征-颜色矩,自定义计算三阶颜色矩的函数

任务1.4 计算三个颜色通道的一阶颜色矩、二阶颜色矩和三阶颜色矩

任务1.5 自定义函数正确获取指定路径中的所有图片名称

任务1.6 自定义函数,用循环语句计算所有图片的颜色矩和获取图片标签,分别保存为数组

在读取样本图片的时候需要注意的是Python提供的原生函数不太方便去处理图片的,包括图片的读取,那么这个时候,我们需要安装第三方库。处理图片数据可以用PIL这个库。利用PIL库把图片读取进来后我们就需要对它进行预处理操作了,其中有一个重要的环节叫做特征提取,我们的目标将不同的水质

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值