python矩阵对角化,使用Python进行并行精确矩阵对角化

Is anyone aware of an implemented version (perhaps using scipy/numpy) of parallel exact matrix diagonalization (equivalently, finding the eigensystem)? If it helps, my matrices are symmetric and sparse. I would hate to spend a day reinventing the wheel.

EDIT:

My matrices are at least 10,000x10,000 (but, preferably, at least 20 times larger). For now, I only have access to a 4-core Intel machine (with hyperthreading, so 2 processes per core), ~3.0Ghz each with 12GB of RAM. I may later have access to a 128-core node ~3.6Ghz/core with 256GB of RAM, so single machine/multiple cores should do it (for my other parallel tasks, I have been using multiprocessing). I would prefer for the algorithms to scale well.

I do need exact diagonalization, so scipy.sparse routines are not be good for me (tried, didn't work well). I have been using numpy.linalg.eigh (I see only single core doing all the computations).

Alternatively (to the original question): is there an online resource where I can find out more about compiling SciPy so as to insure parallel execution?

解决方案

For symmetric sparse matrix eigenvalue/eigenvector finding, you may use scipy.sparse.linalg.eigsh. It uses ARPACK behind the scenes, and there are parallel ARPACK implementations. AFAIK, SciPy can be compiled with one if your scipy installation uses the serial version.

However, this is not a good answer, if you need all eigenvalues and eigenvectors for the matrix, as the sparse version uses the Lanczos algorithm.

If your matrix is not overwhelmingly large, then just use numpy.linalg.eigh. It uses LAPACK or BLAS and may use parallel code internally.

If you end up rolling your own, please note that SciPy/NumPy does all the heavy lifting with different highly optimized linear algebra packages, not in pure Python. Due to this the performance and degree of parallelism depends heavily on the libraries your SciPy/NumPy installation is compiled with.

(Your question does not reveal if you just want to have parallel code running on several processors, or on several computers. Also, the size of your matrix has a big impact on the best method. So, this answer may be completely off-the-mark.)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值