实际上,我正在使用OpenCV和Python开发一个机器视觉项目。
目标:项目的目标是以高精度测量组件的尺寸。
主要硬件:巴斯勒5MP照相机(aca-2500-14gm)
一个红色背光灯(100毫米x 100毫米)(我的组件大小约为60毫米)
实验
因为我正在考虑非常严格的公差限制,所以我首先做了一个精确的研究。我把组件放在背光源上,在不移动部件的情况下拍摄了100张图像(想象一下100帧的视频)。我测量了所有100幅图像的外径。我的毫米/像素比是0.042。我测量了测量的标准偏差,以确定精度,结果是0.03mm,这是不好的。组件和设置都没有接触,因此我希望精度为0.005mm。但我的损失是一个数量级的。我使用OpenCV的Hough圆来计算组件的OD。
代码:import sys
import pickle
import cv2
import matplotlib.pyplot as plt
import glob
import os
import numpy as np
import pandas as pd
def find_circles(image,dp=1.7,minDist=100,param1=50,param2=50,minRadius=0,maxRadius=0):
""" finds the center of circular objects in image using hough circle transform
Keyword arguments
image -- uint8: numpy ndarray of a single image (no defau

本文介绍了一个使用OpenCV与Python进行高精度机器视觉测量的项目。通过巴斯勒5MP相机和红色背光灯拍摄组件,计算毫米/像素比例后,发现测量精度低于预期。使用Hough圆检测组件的外径,但标准偏差0.03mm远高于期望的0.005mm。作者探讨了可能存在的问题并寻求解决方案。
最低0.47元/天 解锁文章
613

被折叠的 条评论
为什么被折叠?



