python 机器视觉测量_用Opencv python实现精密测量

本文介绍了一个使用OpenCV与Python进行高精度机器视觉测量的项目。通过巴斯勒5MP相机和红色背光灯拍摄组件,计算毫米/像素比例后,发现测量精度低于预期。使用Hough圆检测组件的外径,但标准偏差0.03mm远高于期望的0.005mm。作者探讨了可能存在的问题并寻求解决方案。
摘要由CSDN通过智能技术生成

实际上,我正在使用OpenCV和Python开发一个机器视觉项目。

目标:项目的目标是以高精度测量组件的尺寸。

主要硬件:巴斯勒5MP照相机(aca-2500-14gm)

一个红色背光灯(100毫米x 100毫米)(我的组件大小约为60毫米)

实验

因为我正在考虑非常严格的公差限制,所以我首先做了一个精确的研究。我把组件放在背光源上,在不移动部件的情况下拍摄了100张图像(想象一下100帧的视频)。我测量了所有100幅图像的外径。我的毫米/像素比是0.042。我测量了测量的标准偏差,以确定精度,结果是0.03mm,这是不好的。组件和设置都没有接触,因此我希望精度为0.005mm。但我的损失是一个数量级的。我使用OpenCV的Hough圆来计算组件的OD。

代码:import sys

import pickle

import cv2

import matplotlib.pyplot as plt

import glob

import os

import numpy as np

import pandas as pd

def find_circles(image,dp=1.7,minDist=100,param1=50,param2=50,minRadius=0,maxRadius=0):

""" finds the center of circular objects in image using hough circle transform

Keyword arguments

image -- uint8: numpy ndarray of a single image (no defau

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>