wcf服务发布两个endpoint_使用 Python Flask 框架发布机器学习 API!

本文描述了如何通过 Python Flask REST API 向外界暴露机器学习模型。

4d84e1943aa708df20c447932356d476.png

Flask 正如其官方网站所述,充满乐趣且易于安装。确实,这个 Python 的微框架提供了一种使用 REST 端点注释 Python 函数的有效方式。目前我使用 Flask 发布机器学习模型 API,以供第三方业务应用程序访问。

此示例基于 XGBoost。

为了更佳的代码维护性,我建议使用一个单独的 Jupyter notebook 发布机器学习模型 API。导入 Flask 和 Flask CORS 模块:

from flask import Flask, jsonify, request
from flask_cors import CORS, cross_origin

import pickle
import pandas as pd
复制代码

该模型使用 皮马印第安人糖尿病数据集 (Pima Indians Diabetes Database)训练。CSV 数据可以从这儿下载。要构建一个 Pandas 数据帧类型的变量来作为模型 预测 函数的输入,我们需要定义一个包含数据集的列名的数组:

# 获取请求头中的 payload
headers = ['times_pregnant', 'glucose', 'blood_pressure', 'skin_fold_thick', 'serum_insuling', 'mass_index', 'diabetes_pedigree', 'age']
复制代码

使用 Pickle 加载预训练模型:

# 使用 Pickle 加载预训练模型
with open(f'diabetes-model.pkl', 'rb') as f:
    model = pickle.load(f)
复制代码

测试运行并检查模型是否运行良好是个好习惯。首先使用一个列名数组和一个数据数组(使用不在训练或测试数据集中的新数据)来构造数据帧。然后调用两个函数 —— model.predictmodel.predict_proba 中的任意一个。我通常更喜欢 model.predict_proba ,它返回预测结果为 0 或为 1 的概率,这有助于解释某个范围内(例如 0.25 到 0.75)的结果。最后使用一个示例 payload 构建 Pandas 数据帧,然后执行模型预测:

# 用数据帧测试模型
input_variables = pd.DataFrame([[1, 106, 70, 28, 135, 34.2, 0.142, 22]],
                                columns=headers, 
                                dtype=float,
                                index=['input'])

# 获取模型的预测结果
prediction = model.predict(input_variables)
print("Prediction: ", prediction)
prediction_proba = model.predict_proba(input_variables)
print("Probabilities: ", prediction_proba)
复制代码

以下是 Flask API 的写法。确保启用 CORS,否则来自其他主机的 API 调用将无法成功。在要通过 REST API 暴露的函数前加上注释,并提供端点的名称和支持的 REST 方法(本例中为 POST)。从请求中获取 payload 数据,接着是构造 Pandas 数据帧并执行模型 predict_proba 函数:

app = Flask(__name__)
CORS(app)

@app.route("/katana-ml/api/v1.0/diabetes", methods=['POST'])
def predict():
    payload = request.json['data']
    values = [float(i) for i in payload.split(',')]
    
    input_variables = pd.DataFrame([values],
                                columns=headers, 
                                dtype=float,
                                index=['input'])

    # 获取模型的预测结果
    prediction_proba = model.predict_proba(input_variables)
    prediction = (prediction_proba[0])[1]
    
    ret = '{"prediction":' + str(float(prediction)) + '}'
    
    return ret

# 运行 REST 接口,port=5000 用于直接测试
if __name__ == "__main__":
    app.run(debug=False, host='0.0.0.0', port=5000)
复制代码

函数结果被构造成 JSON 字符串并作为响应返回。我在 Docker 容器中运行 Flask,这就是为什么使用 0.0.0.0 作为它运行的主机 IP。端口 5000 被映射为外部端口,可以允许来自外部的调用。

虽然直接在 Jupyter notebook 中启动 Flask 接口也是可行的,但我还是建议将其转换为 Python 脚本并作为服务从命令行运行。使用 Jupyter nbconvert 命令将其转换为 Python 脚本:

jupyter nbconvert — to python diabetes_redsamurai_endpoint_db.ipynb

Flask 程序可以利用 PM2 进程管理器从后台启动。这种方式可以将端点作为服务启动,并且能启用多个运行在不同端口的进程(用于负载均衡)。PM2 启动命令:

pm2 start diabetes_redsamurai_endpoint_db.py

373c8d75c56606d811825860c5f0a390.png

pm2 monit能够展示运行中的进程的信息:

ded5614fba2c98e76d4f5ab7a1284a03.png

用 Postman 调用 Flask 提供的机器学习分类模型 REST API:

05eb776d203b84e6b7acd3c820da9248.png

更多信息:

  • GitHub 仓库源码
  • 之前关于 XGBoost 模型训练的文章

如果发现译文存在错误或其他需要改进的地方,欢迎到 掘金翻译计划 对译文进行修改并 PR,也可获得相应奖励积分。文章开头的 本文永久链接 即为本文在 GitHub 上的 MarkDown 链接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值