滑动窗口算法_从零手写VIO——(四)基于滑动窗口算法的 VIO 系统:可观性和一致性(上)舒尔补...

本文介绍了滑动窗口算法在视觉惯性里程计(VIO)系统中的应用,探讨了可观性和一致性问题。通过最大后验概率估计,讨论了系统状态的最优估计。文章深入浅出地讲解了从高斯分布到信息矩阵的转换,以及舒尔补在边际概率和条件概率计算中的应用,结合实例展示了如何进行变量的边缘化处理,验证了理论的正确性。
摘要由CSDN通过智能技术生成

88b92922bd328de5cd8dc99148b15edd.png

d4bc9b26837b248858eea653732b6736.png

从高斯分布到信息矩阵

某个状态

,以及一次与该状态相关的观测
。由于噪声的存在,观测服从
的概率分布,可以直观理解为:在状态
下,呈现观测
的概率,当此概率越大说明该观测越准确。多次观测时,假设各个观测之间相互独立,则多个测量
构成的似然概率为:

0764ccac8fa7bf2eb28ea4d930a6f753.png
(1)

如果知道机器人状态的先验信息

,如 GPS,车轮码盘信息等,则根据贝叶斯法则,可以求得后验概率:

66bdff456946b19c544e2eac4d8c951e.png
(2)

通过最大后验概率估计,获得系统状态的最优估计:

61cb9ed495969fe2f0db4693b5690ba6.png
(3)

在之前我写的卡尔曼滤波中公式部分同样使用了最大后验概率估计。在本问题中,在系统状态

有噪声的观测
表示成概率分布的形式;在已知状态的先验信息,可能是其他传感器得到的信息,现在想融合相机信息,使用 Bayes 法则,求出后验概率
芝士奶盖:卡尔曼滤波 —— 各路大神和自己的总结​zhuanlan.zhihu.com
e736ac63c2cf918af9292cedcb9744c1.png

后验公式(2)状态量与分母无关,最大后验变成:

1f9b343acafdf918050c06ebc70cc34a.png
(4)

即对等式右侧取对数

,根据对数的性质拆开,求其负值的最小值。这里取对数的原因也很简单,高斯分布中有
(高斯分布高维形式:
,舍去系数、负负为正也就有了(7)式的形式:

ec57e125aceb815c84d124841cc577bc.png
(5)

假设观测值服从多元高斯分布:

8dc74e88d214f51ae0c51f03f363fc9a.png
(6)

故有:

68ea1147b7b62078b255ef3297448ae7.png
(7)

此最小二乘的求解可以使用增量方程:(下式应该很好理解,

是系统状态量的增量,类比于经典方程的
是信息矩阵,也是协方差的逆)

b69efa460fa5b0040e85a9a17fc015d6.png
(8)
多元高斯分布
多元高斯分布(The Multivariate normal distribution)​www.cnblogs.com
19ce1287d1e931647e35264f7b588a90.png

零均值的多元高斯分布:

是协方差矩阵,协方差矩阵的逆记作
。三维变量的协方差矩阵为:

ac6aac3f66c2078d45257a2d58a17113.png
(9)

若变量间相互独立,那么除主对角线以外元素都为 0。在上讲中用连续时间下的狄拉克函数

描述相互独立的关系。(9)式中用
为对应元素求期望。

42def88c26b6122ad3e3335fbce8b383.png
Examples [1]

Example 1

a26a0f2cfc6b4d57e263662e5ab5b4fd.png

根据此描述,写出协方差矩阵:

6ee100b580cb20663317cac700850253.png
(10)

其中:

ba2cd7ee6fbe2d1b750ce3d39acf4b62.png
(11)

此外

,下面计算非对角元素:

07604bee5afd340f0e9fddfd847405bf.png
(12)

公式可以通过方差的性质直接写出:

上述这部分在论文中是这样书写的:(K就是

协方差)

f1d76d46d2cad7a635a9d09cc5c220ce.png

cf06a07101971eec711cb2eb13bad2c4.png

随后计算该协方差矩阵的逆:

3a26a1c2da1c3eec43852bdd8f157dfc.png

推导应该是很容易理解的,

,且
的条件。然后就有个上面的式子,再经通分后写成矩阵形式就有了
的形式,式中的
就是协方差矩阵的逆,也称作信息矩阵。可以注意到,它的
位置是0,表示
关于
条件独立。

若室内外温度正相关

):
  • 协方差中非对角元素
    表示两变量正相关。
  • 信息矩阵中非对角元素为负数,为零。
    表示在
    发生的前提下,元素
    正相关。

Example 2

6d065ab9a77161258fa6ee73f704d3a8.png

图中可见是两个变量控制一个变量,比如三角化,用两个相机 pose 计算特征三维坐标的深度:

911c58c58b95f4551b04d0ab37d1e74f.png
(13)

2976f7842b7b9e96a1609d64d0dcc6f3.png
(14)

论文中是这样↓的:

ac647ded94bbd7b7eb72a5b82bbe4945.png

但是论文对逆矩阵

的推导中有一个小的错误就是提取出
后,位于矩阵
两个位置的分母并没有将 2 提出来,其他的没有问题,可以自己简单推一下。
  • 虽然
    不相关,但是他们的信息矩阵对应元素
    并不为 0。
  • 而当
    时,即对应信息矩阵变量
    在另一变量发生的前提下,成负相关。本例中从公式
    就可以看出,当
    确定时,
    越大,
    越小。
从 Example 1 去除变量

d3025972b5f0e26188e1549f2884c1f2.png

由于公式是这样的:

884ec96e4ed3711ee97fa1096f2a1518.png
(15)

的取值都与
无关,故可以直接在协方差矩阵上把有关于
的全部删去:

335bd15bb7851285f3c106e649afdc20.png
(16)

矩阵对称的不要忘记!这样就变成了一个

的矩阵。对于信息矩阵:

6dd97faa563cbb95ae77f2e785eb1bee.png
(17)

则是删去与

相关的所有项,在矩阵中就是紫蓝色表示的。可是实际情况下并不会把变量的项用颜色在矩阵中分类,所以引入 Sochur 和 边缘化。

舒尔补应用:边际概率,条件概率

舒尔补 [2] 定义

给定任意的分块矩阵

,如下所示:

bdca31540eb4826f23502911c0d234d9.png
(18)
  • 如果,矩阵块
    是可逆的,则
    称之为
    关于
    的舒尔补。
  • 如果,矩阵块
    是可逆的,则
    称之为
    关于
    的舒尔补。
Schur complement​en.wikipedia.org

是不是很熟悉,在十四讲第二版的第 248-251 页,求解稀疏矩阵时就用到了舒尔补进行边缘化,将观测点 marginalize 使得改进了原先使用的 EKF 方法,使得 BA 能够实时计算。

如何得到舒尔补的形式

矩阵变成上三角或者下三角形过程中,就会得到舒尔补:

9332c7b3fde4eed057945064bea14b11.png
(19)

其中:

。联合起来,将
变成对角矩阵:

6d9851c204d9df941b5e03a2752cb9ec.png
(20)

反过来还能恢复成矩阵

adab491e9d323478a9a612d1785f8a21.png
(21)

4943e7bc867f65ffbe71d6a84d63aaec.png
(22)
舒尔补应用于多元高斯分布

设多元变量

服从高斯分布,且由两部分组成:
,变量构成的协方差矩阵:

0b0ee542495a2aa54c7cbd7c53c53f3d.png

其中

概率分布为:

0405f9808eeeb38a5b5c26e91a17f4ae.png

81f7ac48d87321864937f3cb0e43f1c2.png
(23)

边际概率,
条件概率。

从上式可知:

。即边际概率的协方差直接取矩阵块就成,条件概率的协方差是
对应的舒尔补。

从上式(23)可以得到信息矩阵

b252972abf8fec6346729b19fc60bcb7.png
(24)

可以总结出

的信息矩阵:
  • 条件概率
    的信息矩阵为:
  • 边际概率
    的信息矩阵为:
    是边际概率的信息矩阵,
    是联合信息矩阵的部分矩阵块。

用求得的结论验证 example 1 的边缘化形式:

c3e815015623bb5d0934151d3a8a1f81.png

从联合分布

中边缘化掉变量
,即
对应的信息矩阵为:

fb8490a59d482b7c8b9be67b72dab6c4.png
(25)

与删去颜色得到的完全一致!

总结部分我直接截了贺博课件的图如下:

66811d622ed7e15f6ea7ac722c9f9312.png

参考

  1. ^David Mackay. "The humble Gaussian distribution". In: (2006) https://people.montefiore.uliege.be/geurts/Cours/AML/Readings/humble.pdf
  2. ^Schur Complement https://en.wikipedia.org/wiki/Schur_complement
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值