matlab将绘图窗口分为四格,MATLAB课后习题

5、利用rand函数产生(0,1)间的均匀分布的10*10随机矩阵A,然后统计A中大于等于0.6的元素的个数。

解:

A=rand(10);

B=A >= 0.6;

C=sum(B);

count=sum(C)

运行结果(每次运行结果是不同的,仅作参考):

count=32

6、利用randn函数产生均值为0,方差为1的10*10随机矩阵A,然后统计A中大于-0.5且小于0.5的元素的个数。

解:

A=randn(10);

B=(A<0.5)&(A>-0.5);

C=sum(sum(B))

运行结果(每次运行结果是不同的,仅作参考):C=48

1、解:

if and(a<1,b<=0.5)

语句1;

elseif and(a<1,b>0.5)

语句2;

elseif and(a>=1,b<=0.5)

语句3;

else

语句4;

2、有一矩阵A,找出矩阵中值等于1的元素,并将它们重新排列成列向量B。

解:

A=2*rand(4);

k=find(A<=1);

A(k)=[];%删除下标为k的元素

B=A

运行结果(每次运行结果是不同的,仅作参考)

B =

1.4769

1.8348

1.5310

1.1524

1.3667

1.0932

1.2889

1.2952

1.3580

3、在一测量矩阵A(100*3)中,存在有奇异值(假设大于100的置认为是奇异值),编程实

现删去奇异值所在的行。

解:

A=120*randn(10,3);

[i,j]=find(A>100);

A(i,:)=[] %删去存在奇异值的行

4、在给定的100*100矩阵中,删去整行为0的行,删去整列为0的列。

解:

A=diag([1 2 3 4],1)

B=any(A)

[i,j]=find(B==0)

A(:,i)=[] %删除全为0的列

B=any(A)

[i,j]=find(B==0)

A(j,:)=[] %删除全为0的行

运行结果:

初始值:A =

0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0

操作后:A =

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

1、将窗口分割成四格,分别绘制正弦、余弦、正切和余切函数曲线,并加上适当的标注。

程序为:

x=0:pi/50:2*pi;

k=[1 26 51 76 101];

x(k)=[];%删除正切和余切的奇异点

figure(1)

subplot(2,2,1)

plot(x,sin(x),k--),grid on

legend(\ity=sin(x))

title(y=sin(x))

xlabel(x), ylabel(y)

subplot(2,2,2)

plot(x,cos(x),r--),grid on

legend(\ity=cos(x))

title(y=con(x))

xlabel(x), ylabel(y)

subplot(2,2,3)

plot(x,tan(x),k),grid on

legend(\ity=tan(x))

title(y=tan(x))

xlabel(x), ylabel(y)

subplot(2,2,4)

plot(x,cot(x),b-),grid on

legend(\ity=cot(x))

title(y=cot(x))

xlabel(x), ylabel(y)

运行如下:

2、绘制多峰函数peaks和三角函数多条曲线。

多峰函数peaks:

[x,y]=meshgrid(-3:0.15:3);

z=peaks(x,y);

x1=x(1,:);

figure(1)

plot(x1,z),grid on

title(二维多峰函数)

图形为:

[x,y]=meshgrid(-3:0.15:3);

z=peaks(x,y);

figure(1)

plot3(x,y,z),grid on

title(三维多峰函数)

三角函数多条曲线:

程序为:

t=-pi:pi/20:pi;

y1=sinh(t); %双曲正弦

y2=cosh(t); %双曲余弦

figure(1)

subplot(2,1,1)

plot(t,y1,r--,t,y2,k-),grid on

legend(\ity1=sinh(t),\ity2=cosh(t))

title(三角函数1)

xlabel(t), ylabel(y)

subplot(2,1,2)

plot(t,sin(t),k-),grid on

hold on %保持原有图像函数

plot(t,cos(t),r--)

legend(\ity2=cos(t),\ity1=sin(t))

title(三角函数2)

xlabel(t), ylabel(y)

运行图形为:

3、将图形窗口分成两个,分别绘制以下函数在[-3,3]区间上的曲线,并利用axis调整轴刻度,使他们具有相同缩放尺度。y1=2x+5; y2=x2-3x+1。

程序为:

x=-3:0.1:3;

y1=2*x+5;

y2=x.^2-3*x+1;

figure(1)

subplot(2,2,1)

plot(x,y1,r-),grid on

legend(\ity1=2*x+5)

title(y1=2x+5)

xlabel(x), ylabel(y1)

subplot(2,2,2)

plot(x,y2,k-),grid on

legend(\ity2=x.^2-3*x+1)

title(y2=x^2-3x+1)

xlabel(x), ylabel(y2)

subplot(2,2,3)

plot(x,y1,r-),grid on

legend(\ity1=2*x+5)

title(调整后的y1=2x+5)

axis([-3 3 -10 10])

xlabel(x), ylabel(y1)

subplot(2,2,4)

plot(x,y2,k-),grid on

legend(\ity2=x.^2-3*x+1)

title(调整后的y2=x^2-3x+1)

axis([-3 3 -10 10]) %调整坐标轴

xlabel(x), ylabel(y2)

运行后的图形:

4、绘制饼图。

程序为:

x=[190 33 45 42 45];

explode=[0 1 0 0 0];

figure(1)

subplot(2,1,1)

colormap hsv

pie(x,explode)

gtext(生活费)

gtext(资料费)

gtext(电话费)

gtext(衣服)

gtext(其它)

title(二维饼图)

subplot(2,1,2)

colormap hsv

pie3(x,explode)

title(三维饼图)

图形为:

5、画出函数z=(x-2)2+(y-1.2)2+sin(xy)的三维曲线和网格曲线。

程序为:

[x,y]=meshgrid(0:0.5:10); %为三维绘图产生x,y数据矩阵

z=(x-2).^2+(y-1.2).^2;

figure(1)

subplot(2,1,1)

mesh(x,y,z),grid on %绘制网格曲线

title(网格曲线)

subplot(2,1,2)

plot3(x,y,z),grid on

title(三维曲线)

6、画出下列函数的曲面及等高线图z=x2+y2+sin(xy)。

程序为:

[x,y]=meshgrid(0:pi/10:2*pi);

z=x.^2+y.^2+sin(x*y);

figure(1)

subplot(2,1,1)

surfc(x,y,z), grid on

title(曲面和等高线)

subplot(2,1,2)

[c,h]=contour(x,y,z);

set(h,showtext,on,textstep,get(h,levelstep)*2);

title(等高线)

1、将图形窗口分成两个,分别绘制正割和余割曲线,并加上标注。

程序为:

x1=0:pi\10:2*pi;

figure(1)

subplot(2,1,1)

plot(x,sec(x),k-),grid on

legend(\ity=sec(x))

title(y=sec(x))

xlabel(x), ylabel(y)

subplot(2,1,2)

plot(x,csc(x),k-),grid on

legend(\ity=csc(x))

title(y=csc(x))

xlabel(x), ylabel(y)

运行后图形为:

2、画出对数和指数曲线并加上标注。

x=0.01:0.1:10;

y1=log10(x);

y2=exp(x);

figure(1)

subplot(2,1,1)

plot(x,y1,k-),grid on

legend(\ity1=log-{10}(x))

title(y1=log-{10}(x))

xlabel(x), ylabel(y1)

subplot(2,1,2)

plot(x,y2,k-),grid on

legend(\ity2=exp(x))

title(y2=exp(x))

xlabel(x), ylabel(y2)

3、设有函数y=exp(x+5)+x.^3,在半对数坐标系中绘制曲线。

程序为:

x=1:0.01:10;

y=exp(x+5)+x.^3;

figure(1)

subplot(2,1,1)

plot(x,y,r-),grid on

legend(\ity=exp(x+5)+x.^3)

title(平面坐标)

xlabel(x), ylabel(y)

subplot(2,1,2)

semilogx(x,y,k-),grid on %半对数坐标轴

legend(\ity=exp(x+5)+x.^3)

title(半对数坐标)

xlabel(x), ylabel(y)

4、画出各种大小和形状的球和柱体。

绘制柱体的程序为:

t=0:pi/10:2*pi;

figure(1)

subplot(2,1,1)

[x,y,z]=cylinder(2+cos(t));

surf(x,y,z),axis square

title(复杂柱面体)

subplot(2,1,2)

cylinder, axis square

title(简单柱体)

绘制球的程序为:

figure(1)

subplot(2,1,1)

sphere

axis equal

title(半径为1的球)

subplot(2,1,2)

[x,y,z]=sphere;

x=2*x;

y=2*y;

z=2*z;

surf(x,y,z),axis square

title(半径为2的球)

运行后的图形:

5、绘制三维条形图:

程序为:

Y=cool(7);

figure(1)

subplot(2,2,1),bar3(Y,detached),title(Detached)

subplot(2,2,2),bar3(Y,0.25,detached),title(Width=0.25)

subplot(2,2,3),bar3(Y,grouped),title(Grouped)

subplot(2,2,4),bar3(Y,stacked),title(Stacked)

运行后的图形为:

6、绘制二维条形图

程序为:

Y=round(rand(5,3)*10);

figure(1)

subplot(2,2,1),bar(Y,group),title(Group)

subplot(2,2,2),bar(Y,stack),title(Stack)

subplot(2,2,3),barh(Y,stack),title(Stack)

subplot(2,2,4),bar(Y,1.5),title(Width=1.5)

运行后的图形:

1、编写M函数实现:求一个数是否为素数,在编写一主程序,要求通过键盘输入一个整数,然后完成判断其是否为素数。

解:

function prime(x)

n=fix(sqrt(x));

for i=2:n

if rem(x,i)==0

a=fasle

return

else a=true

end

end

运行结果:

>> x=56;

>> prime(x)

a =

fasle

2、编写程序完成从表示字符的响亮中删去空格,并求出字符个数。

解:

function [nstr,n]=del(str)

nstr=[];

k=find(str~= );

nstr=str(k);

n=length(nstr);

end

运行后为:

str=dr hy fgh gtesd hgfds;

>> [nstr,n]=del(str)

nstr =

drhyfghgtesdhgfds

n =

17

3、编写M函数统计十进制数值中’0‘的个数,然后编写脚本文件,实现统计所有自然数1~2006中0的个数。

解:

M函数为:

function y=geshu(x)

s=num2str(x);

n=length(s);

m=0;

if s(1)==0

disp(x is error);

return

end

for i=2:n

if s(i)==0

m=m+1;

end

end

y=m;

脚本文件为 jiu4:

sum=0;

for x=1:2006

y=geshu(x);

sum=sum+y;

end

disp(sum)

运行结果为:

>> jiu4

504

4、利用menu函数输入选择参数ch。当ch=1时,产生[-10,10]之间均匀分布的随机数;当ch=2时,产生[-5,5]之间均匀分布的随机数;当ch=3时,产生[-1,1]之间均匀分布的随机数;当ch=4时,产生均值为0,方差为1的正态分布随机数。要求使用switch函数。

解:

s=menu(ch,1,2,3,4);

n=[];

switch s

case 1,n=20*rand(3)-10

case 2,n=10*rand(3)-5

case 3,n=2*rand(3)-1

case 4,n=randn(3)

otherwise disp(error)

end

运行后:

按下2后:

n =

4.2274 0.4366 3.3897

3.0037 4.8478 -0.6674

-2.1405 2.1568 -0.2938

5、求阵列x的平均值和标准差

解:

function [mean1,stdev]=stat2(x)

[m,n]=size(x);

if m==1

m=n;

end

s1=sum(x);s2=sum(x.^2);

mean1=s1/m;

stdev=sqrt(s2/m-mean1.^2);

运行后:

>> x=rand(4,4)+2;

>> [mean1,stdev]=stat2(x)

mean1 =

2.5207 2.3922 2.6498 2.2539

stdev =

0.1713 0.1892 0.1725 0.2027

6、测试程序执行时间

% tech1.m

tic

i=0;

for t=0:.01:100

i=i+1;

y(i)=sin(t);

end

toc

% tech2.m

tic

t=0:.01:100;

y=sin(t);

Toc

运行后:

Elapsed time is 0.015217 seconds.

Elapsed time is 0.000508 seconds.

1、产生menu选择输出颜色

解:

s=menu(color selection,red,green,blue,yellow,black)

switch s

case 1,scolor=red;

case 2,scolor=green;

case 3,scolor=blue;

case 4,scolor=yellow;

case 5,scolor=black;

otherwise disp(error)

end

Scolor

2、企业发放的奖金按个人完成的利润(I)提成。分段提成比例 wei 即如王某完成25万元利润时,个人可得

y=10 x 10% + 10 x 5% + 5 x 2% (万元)

据此编写程序,求企业职工的奖金。

function bonus=bon(I)

n=fix(I/100000)

if(n>4)

n=4;

end

bon1=100000*0.1;

bon2=0.05*(200000-100000);

bon3=0.02*(400000-200000);

switch n

case 0,bonus=I*100000;

case 1

bonus=bon1+0.05*(I-100000);

case {2,3}

bonus=bon1+bon2+0.02*(I-200000);

case 4,bonus=bon1+bon2+bon3+0.01*(I-400000);

end

运行后:

>> I=1700000;

>> bonus=bon(I)

n =

17

bonus =

32000

3、有一分数序列2/1,3/2,5/3/,8/5……求前15项和。

解:s=1;t=2;sum=0;

x=t/s;

sum=sum+x;

for i=1:15

z=t;t=s+t;s=z;

x=t/s;

sum=sum+x;

end

sum

运行后:

>> qiuhe

sum =

26.1881

4、约瑟夫环

解:

n=input(please input n:);

m=input(please input m:);

b=1:n;

i=1;c=0;s=0;

while s> yuese

please input n:12

please input m:3

a =

Columns 1 through 8

3 6 9 12 4 8 1 7

Columns 9 through 16

2 11 5 10 3 16 5 20

Columns 17 through 23

11 9 2 10 19 15 1

5、编写程序计算x在(-3,3)上,并画出曲线。

解:function y=func2(x)

n=length(x);

for i=1:n;

if (x(i)>=-3)&&(x(i)=-1)&&(x(i)<1)

y(i)=-x(i).^2+1;

else (x(i)>=1)&&(x(i)<3)

y(i)=[-x(i).^2+4*x(i)-3]/2;

end

end

脚本为:

x=-3:.01:3;

y=func2(x);

figure(1)

plot(x,y),grid on

title(y=func2(x))

xlabel(x), ylabel(y)

运行后:

1、求矩阵 与 的逆矩阵和行列式。

解:

a=[5 3 5;3 7 4;7 9 8];

b=[2 4 2;6 7 9;8 3 6];

c1=inv(a)

c2=det(a)

d1=inv(b)

d2=det(b)

运行后:

c1 =

10.0000 10.5000 -11.5000

2.0000 2.5000 -2.5000

-11.0000 -12.0000 13.0000

c2 =

2.0000

d1 =

0.1531 -0.1837 0.2245

0.3673 -0.0408 -0.0612

-0.3878 0.2653 -0.1020

d2 =

98.0000

2、解方程组

解:

A=[3 2 1;1 -1 3;2 4 -4];

b=[7 6 -2];

A\b

运行后:

ans =

1.0000

1.0000

2.0000

2、对一组数据进行分别采用y1(t)=c1+c2exp(-t),y2(t)=d1+d2t.*exp(-t)拟合.

解:

t=[1 2 3 4 5 6 7 8 9 10];

y=[4.842 4.362 3.754 3.368 3.169 3.083 3.034 3.016 3.012 3.005];

a=[ones(size(t)) exp(-t)];

C=a\y;

b=[ones(size(t)) t.*exp(-t)];

D=b\y;

T=[10:-1:1];

y1=[ones(size(T)) exp(-T)]*C;

y2=[ones(size(T)) T.*exp(-T)]*D;

plot(T,y1,r--,T,y2,k-,t,y,o);

legend(\ity1(t)=c1+c2exp(-t),\ity2(t)=d1+d2t.*exp(-t))

title(曲线拟合)

xlabel(\itt),ylabel(\ity)

运行后:

4、矩阵 ,分别对a进行特征值分解、奇异值分解、LU分解、QR分解。

解:

>> [v,d]=eig(a,b)

v =

-0.4330 -0.2543 -0.1744

-0.5657 0.9660 -0.6091

-0.7018 0.0472 0.7736

d =

13.5482 0 0

0 4.8303 0

0 0 3.6216

>> a=[9 1 2;5 6 3;8 2 7];

>> [u,s,v]=svd(a)

u =

-0.5601 0.5320 -0.6350

-0.4762 -0.8340 -0.2788

-0.6779 0.1462 0.7204

s =

15.5234 0 0

0 4.5648 0

0 0 3.3446

v =

-0.8275 0.3917 -0.4023

-0.3075 -0.9156 -0.2592

-0.4699 -0.0907 0.8781

>> [l,u]=lu(a)

l =

1.0000 0 0

0.5556 1.0000 0

0.8889 0.2041 1.0000

u =

9.0000 1.0000 2.0000

0 5.4444 1.8889

0 0 4.8367

>> [q,r]=qr(a)

q =

-0.6903 0.3969 -0.6050

-0.3835 -0.9097 -0.1592

-0.6136 0.1221 0.7801

r =

-13.0384 -4.2183 -6.8260

0 -4.8172 -1.0807

0 0 3.7733

5、求解微分方程 。

解:

function dy=funf(t,y)

dy=[5*y(1)-5*y(2)-6*y(3);3*y(1)-2*y(2)+5*y(3);2*y(1)-y(2)-4*y(3)];

脚本文件:

x0=[1,-4,5];

tspan=[30,100];

[t,x]=ode45(funf,tspan,x0);

plot3(x(:,1),x(:,2),x(:,3)),grid on

title(微分方程曲线)

运行后:

微分方程组x’=10(-x+y);y’=28x-y-xz;z’=xy-8z/3,x0=[12,2,9],求微分方程在[0,30]上的解,并画出系统轨迹。

解:

脚本文件:

二维图:

三维图:

2、分别用多项式和指数函数进行拟合。

y1(t)=c1+c2t+c3t2,y2(t)=d1+d2exp(t)

解:

t=[0 0.2 0.4 0.6 0.8 1.0 2.0 5.0];

y=[1.0 1.51 1.88 2.13 2.29 2.40 2.60 -4.00];

B1=[ones(size(t)) t t.*t];

B2=[ones(size(t)) exp(t)];

A=B1\y;

C=B2\y;

T=[0:.1:6];

Y1=[ones(size(T)) T T.*T]*A;

Y2=[ones(size(T)) exp(T)]*C;

plot(T,Y1,-,T,Y2,--,t,y,o)

legend(\itY1,\itY2)

3、 将(x-6)(x-3)(x-8)展开为系数多项式的形式。

解:

>> a=[6 3 8];

>> pa=poly(a);

>> ppa=poly2sym(pa)

ppa =

x^3-17*x^2+90*x-144

4、 求解多项式x3-7x2+2x+40的根。

解:

>> r=[1 -7 2 40];

>> p=roots(r);

-0.2151

0.4459

0.7949

0.2707

5、 求解在x=8时多项式(x-1)(x-2) (x-3)(x-4)的值。

解:

>> p=poly([1 2 3 4]);

>> polyvalm(p,8)

ans =

840

6、 计算多项式乘法(x2+2x+2)(x2+5x+4)。

解:

>> c=conv([1 2 2],[1 5 4])

c =

1 7 16 18 8

7、 计算多项式除法(3x3+13x2+6x+8)/(x+4)。

解:

>> d=deconv([3 13 6 8],[1 4])

d =

3 1 2

9、微分方程组 当t=0, =1; =-0.5,求微分方程组t~【0,25】上的解,并画出x1-x2的系统轨迹。

解:

function dy=fund(t,y)

dy=[0.5-y(1);y(1)-4*y(2)];

脚本文件:

x0=[1,-0.5];

tspan=[0,20];

[T,Y]=ode23(fund,tspan,x0);

figure(1)

plot(T,Y(:,1),r--,T,Y(:,2))

legend(\itx1,\itx2)

1.利用下标建立多维阵列。

产生一个332的多维矩阵A

>>A=[5 7 2; 0 1 2; 3 4 2]; %产生一个3*3矩阵

>>A(:, :, 2)=[2 7 3; 4 2 8; 2 0 3]

A(:,:,1) =

5 7 2

0 1 2

3 4 2

A(:,:,2) =

2 7 3

4 2 8

2 0 3

2.利用MATLAB函数产生多维阵列。

利用MATLAB的函数(如rand、randn、ones、zeros等)都可直接产生多维阵列,在函数调用时可指定每一维的尺寸。例如,为产生10032维的正态分布随机数R,可输入

>>R=randn(100, 3, 2);

>>A=5*ones(3, 4, 2); %产生元素相同的多维阵列

>>B=repmat(5, [3 4 2]); %产生元素相同的多维阵列

3.利用cat函数建立多维阵列

>>A=[2 8; 0 5]; B=[1 8; 2 4];

>>C=cat(3,A,B);

>>D=cat(4,A,B);

>> size(C)

ans = 2 2 2

>> size(D)

ans =

2 2 1 2

这说明得到的C为222维,而D为2212维。

1、冒泡法排序

function y=bubblesort(x) %冒泡法排序.

n=length(x);

for i=1:n-1

for j=i+1:n

if x(i)>x(j)

temp=x(i);

x(i)=x(j);

x(j)=temp;

end

end

end

y=x;

运行结果:

>> x=[12 34 654 2 5 76 23];

>> y=bubblesort(x)

y =

2 5 12 23 34 76 654

以上为按照升序排列的,若要降序,则

if x(i)> x=[12 21 2 4 5 19 45 30];

>> y=bubblesort(x)

y =

45 30 21 19 12 5 4 2

2、傅里叶变换

应用付立叶变换并求频谱图

clc; clf; clear all;

fs=1000;

t=0:1/fs:0.6;

f1=200;

f2=300;

x=sin(2*pi*f1*t)+sin(2*pi*f2*t);

subplot(4,1,1);

plot(n, x);

title(f1(100Hz)\f2(300Hz)的正弦信号,初相0);

xlabel(序列(n));

grid on;

number=512;

y=fft(x,number);

n=0:length(y)-1;

f=fs*n/length(y);

subplot(4,1,2);

plot(f,abs(y)/max(abs(y)));

hold on;

plot(f,abs(fftshift(y))/max(abs(y)),r);

title(f1\f2的正弦信号的FFT(512点));

xlabel(频率Hz);

grid on;

x=x+randn(1,length(x));

subplot(4,1,3);

plot(n, x);

title(原f1\f2的正弦信号(含随机噪声));

xlabel(序列(n));

grid on;

y=fft(x,number);

n=0:length(y)-1;

f=fs*n/length(y);

subplot(4,1,4);

plot(f,abs(y)/max(abs(y)));

title(原f1\f2的正弦信号(含随机噪声)的FFT(512点);

xlabel(频率Hz);

grid on;

4、绘图工具的应用

,当x和y的取值范围均为-2到2时,用建立子窗口的方法在同一个图形窗口中绘制出三维线图、网线图、表面图和带渲染效果的表面图。

程序为:

[x,y]=meshgrid([-2:.2:2]); %产生"格点"矩阵

z=x.*exp(-x.^2-y.^2);

mesh(x,y,z) %网线图

subplot(2,2,1)

plot3(x,y,z) %创建子图

title(plot3 (x,y,z))

subplot(2,2,2)

mesh(x,y,z)

title(mesh (x,y,z))

subplot(2,2,3)

surf(x,y,z) %三维着色表面图

title(surf (x,y,z))

subplot(2,2,4)

surf(x,y,z), shading interp %插值

title(surf (x,y,z), s hading interp)

5、多项式拟合

分别采用二阶和三阶多项式进行拟合

程序为:

t=[1 2 3 4 5 6 7 8 9 10];

y=[15.0 39.5 66.0 85.5 89.0 67.5 12.0 -86.4 -236.9 -448.4];

a=[ones(size(t)) t t.^2];

C=a\y;

b=[ones(size(t)) t t.^2 t.^3];

D=b\y;

T=[1:0.25:10];

y1=[ones(size(T)) T T.^2]*C;

y2=[ones(size(T)) T T.^2 T.^3]*D;

plot(T,y1,r--,T,y2,k-,t,y,o);

legend(\ity1,\ity2)

title(多项式拟合)

xlabel(\itt),ylabel(\ity)

运行结果为:

展开阅读全文

  • 0
    点赞
  • 5
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值