打靶法解定态薛定谔方程_深度科普|从线性代数到量子力学(8): 主角登场: 波函数与薛定谔方程...

448f7c8c93ba8143916c3eb4341ff066.png

本文是深度科普系列《从线性代数到量子力学》的第8课。

了解本系列及本专栏其他文章,请收藏目录:

目录:从线性代数到量子力学​zhuanlan.zhihu.com
0234cb9b32726eb565676aa4e69010ce.png

或关注专栏:

在数学之外体验数学​zhuanlan.zhihu.com
f1164b404abac55fc4738caf071aac58.png

0) 开篇语

在第1课到第6课中,我们通过对态矢量和特征值理论的理解,一点点体会到了量子力学的数学原理。

但那毕竟还只是在更接近数学的纯精神世界中寻求快感,而不是在真实的物理世界中真刀真枪实战。

而在第7课中,我们为顺利进入具体物理世界进行了一次铺垫,直观上感受了向量与函数的联系,为我们拜谒量子力学的主角做好了最后的准备。

接下来,我们就可以召唤量子力学中的两大主角:波函数 (Wave Function)和薛定谔方程 (Schrödinger Equation )隆重登场了。


1) 波函数与表象

还记得我们在第1课开头就提到过的那条“量子力学描述物理世界的方式”吗:

相比于经典力学中用具体的力学量描述物理对象的状态,量子力学中,描述物理状态只需要一个态矢量,它包含了一个物理对象一切力学量的概率信息(而不仅仅是位置 )。

而态矢量的具体表现形式,就是描述“波粒二象性”中那个“波”的波函数。

根据我们对“波”的理解,它描述的是某种振动在空间中的传播。

由于振动牵涉到时间,而传播依赖于空间,所以一个波函数,通常可以描述为空间和时间的函数,我们将它记为:

但需要特别说明的是,这仅仅是波函数在坐标表象下的形式。

不过,这随口一说,新的问题就来了:这个听起来璧格满满的、可以用来忽悠无知小学妹的名词“坐标表象”是个什么玩意儿?

虽然本课还不涉及它的具体解释,但为了方便后文理解,这里还是对“表象”的含义稍微说两句,各位不用完全看懂,体会一下就行:

在线性代数中我们知道,对于同一个向量,选择不同的基底,会得到不同的分量形式。

比如下图中的向量

,在基底
下,分量形式为
;在基底
下,分量形式为

d812f3f8c37ef941af5b20ee7aeef9c7.png

而我们在第7课中,已经理解了如何将一个函数在各点的函数值类比为向量的分量。

那么,现在将向量类比为态矢量,将向量的分量形式类比为函数形式,我们就能理解什么是表象了:

对于同一个抽象的态矢量

而言,“表象”就是它在不同基底下的波函数形式。

比如,当我们关注坐标时,选取坐标的本征态作为基底,它就表现为我们熟悉的波函数形式

,这就叫作态矢量的“
坐标表象”( Coordinate Representation);

(其实,在量子力学里,坐标的本征态并没有一个良好的定义,有兴趣可以看看这个链接中的讨论。这里我们先不理会数学上的严谨性,因为它不会影响我们的讨论 )

而当我们关注动量时,选取动量的本征态作为基底,那么我们会得到另外一个波函数形式

,这就叫做态矢量的“
动量表象”( Momentum Representation)。

这里顺便多说一句:我们知道,同一个向量在不同基底下的分量形式之间,存在某种变换关系,而态矢量的两种表象的波函数之间,也有一定的变换关系。比如坐标表象和动量表象之间,就满足某个非常有名的变换关系。

各位不妨猜一猜这是什么变换,我们在以后讲表象理论时再来揭晓。

现在我们回到坐标表象下的波函数

。我们要来看看,如何由它得到一个物理对象的力学量的概率信息,以及如何引出本文的第二个主角:薛定谔方程。

2) 力学量的概率信息

为了便于理解,我们先忽略波函数随时间变化的情况,并且先只考虑坐标表象下的一维情形,此时波函数仅仅是

坐标的函数:

理论上,给定了具体的波函数,我们就能找出任意经典力学量的概率信息。不管是位置(即坐标 )、动量还是能量……只要有足够的信息,我们都能找出它们的概率分布来。

不过,由于我们是在坐标表象下讨论这个问题,如果选取物理对象的位置坐标本身作为关注的力学量,直觉上似乎更容易计算一些(实际也是这样,以后我们会看到 )。

所以我们就作为一个简单例子,先来计算一下物理对象位置坐标的概率分布吧。

对了,这个概率信息的结论,其实我们很多人都有所耳闻:

按照哥本哈根诠释,波函数的模方

代表一个物理对象在坐标为
的位置出现的概率密度

只不过,在没有理解态矢量之前,我们只能将它看成一个不明所以的物理事实。但现在我们有了态矢量的思维方式,就可以更进一步理解它的数学本质了。

首先,我们知道,位置坐标作为一个力学量,会对应一个算符、以及一系列本征值本征态

我们将坐标的算符(即位置算符 )记作

,它的本征值系列,就是所有可能被我们测量到的坐标值
,而相应的本征态记作

(虽然前面说了,坐标的本征态并没有一个良好的定义,但我们可以继续假装这个问题不存在 )

按照我们第2课中知道的性质,对于处于任意量子态(不一定是本征态 )

的物理对象而言,当我们去测量它的位置坐标时,测到它位于某个位置
处的概率为:

(注意:由于空间坐标是连续的,所以这里的“概率”通常指的是概率密度 )

但这毕竟只是一个不可计算的抽象式,怎么把它转化成我们正在讨论的波函数形式呢?

首先,我们已经知道了,

对应的波函数即是
。而接下来,我们需要找到本征态
对应的波函数。

这个函数比较特殊,但学过复变函数的同学一定见过它,它就是狄拉克发明的δ函数。

对于本征值

对应的本征态
,它们在坐标表象下的波函数都是同一个δ函数:

关于δ函数的具体形式和向量意义,我们留到以后再说。现在我们只关注它的一个令人愉悦的性质,那就是它和任意一个平方可积函数相乘后积分的结果:

而我们在第7课中已经知道,这正好就是两个函数的内积运算,于是我们知道了:

这就得到了哥本哈根解释里描述的那个样子。

而对于三维情形,物理对象在空间中某点

出现的概率密度就是

这个结论,将是我们今后讨论不确定性原理、以及探索如何从量子力学过渡到经典力学时的关键信息。

现在,说完了坐标,让我们将注意力从坐标转移到一个更重要的力学量:能量


3) 能量:薛定谔方程初相见

能量是量子力学实用化的一个重要物理量。

比如对于某种元素或材料而言,讨论它在原子级别的能量概率分布,有助于我们推算元素和材料的宏观性质,这被称为第一性原理计算(First Principle Calculation)。

它是将化学和材料科学从不断试错的“炼金术”升级为有章可循的科学计算的必经之路,关于这一点,我们将在另一个系列:身边的微分方程中介绍。

而在前面的讨论中,我们可以看到,要计算物理对象出现在某个位置的概率密度,需要先找到这个位置对应的本征态的波函数形式。

同理,寻找能量概率分布的关键步骤,就是找到能量的本征值和相应本征态的波函数形式。

为了实现这一点,我们需要先从能量的算符说起。

在第6课中我们曾经提到过,能量的算符叫作哈密顿算符,记作

(其实要写成

也无妨,但因为能量算符的性质与分析力学紧密相连,而分析力学中能量又被称作哈密顿量,所以能量算符也就称作哈密顿算符了,没学过分析力学的同学可以先忽略这条信息,以后我们需要的时候再来具体介绍 )

相应的能量本征值系列记为

,本征态系列记为

根据第6课中提到的算符的本征值和本征态的性质(类比矩阵的特征值理论,还记得吗?),我们知道:

这个式子将是我们寻找能量本征态的关键,因为只要我们确定了哈密顿算符在某个表象(比如坐标表象 )中的具体形式,理论上,我们就能找出相应的本征值和本征态。

这里顺便说一句,同一个算符,在不同的表象下,也有不同的形式,就像线性代数中同一个线性变换,在不同基底下表现出不同的矩阵形式一样(这些矩阵互为相似矩阵 )。

所以,当我们要进行具体计算的时候,需要找出一个算符在某个表象下的具体形式,就像计算矩阵特征值的时候需要一个具体的矩阵一样。

那么,如何找到哈密顿算符的具体形式呢?这需要我们回到经典力学中寻找一些启发……

我们知道,在经典力学中,一个物体的总能量等于动能加势能:

,而动能
(
不考虑转动的情形下 ),于是:

而量子力学作为经典力学的加强版本,也满足这样的关系,只不过,经典力学中的能量、动量、势能,到了量子力学中都变成了算符,于是上面的关系式变成了:

而我们知道,算符是要作用在一个具体的态矢量上面才能得到它的本征值和本征态信息,于是我们可以得到哈密顿算符作用在态矢量上的形式:

你也许要问了:这不就是把经典力学的量都换成算符了吗?我们还是没有算符的具体形式啊?

别着急,如果我们知道了动量算符和势能算符在坐标表象下的具体形式,再结合

的波函数形式,问题就有谱了。

为了让表述简单化,我们仍然来考虑一维的、且系统不随时间变化的情况:

首先,在具体的物理场景中,势能的空间分布是一个已知量:

,在不追求严谨的情况下,可以认为这就是坐标表象下势能算符
的具体形式 (
三维情形下为
)

而动量算符的形式有点反直觉,这里我们先不加解释(解释放到下节课 )、直接给出它的形式:

在一维情形的坐标表象下,动量算符是关于坐标的微分算子:

(不难想象,在三维情形的坐标表象下,动量算符是一个梯度算子:

)

再考虑到

,将三者代入算符版本的能量关系式,我们就得到了:

如果将能量本征态的波函数形式记为

,那么根据算符与本征态的关系:
,我们就能得到:

看出来了吗?这是一个微分方程,准确说,是一个典型的定态薛定谔方程(虽然它还不是我们熟悉的那个薛定谔方程 )。

解出这个方程,我们就能得到物理对象的能量在相应物理情形下的本征值和本征态,从而利用态矢量与本征态的内积关系,求出物理对象处于某种状态时的能量概率分布。

但这牵涉到方程的求解,本课暂不讨论。在这里,我们更愿意去庆贺一件事情,就是我们又一次看到了代数方程和微分方程、特征向量和本征态之间的异曲同工之妙。

而如果我们关注态矢量的时间演化法则,那么以后我们还会看到,它的时间变化率也和哈密顿算符有关:

移到左边,并代入坐标表象下哈密顿算符作用在波函数上的具体形式、即:
,我们还能导出关于态矢量时间演化的微分方程:

熟悉这个式子吗?没错,这就是我们在科普书或量子力学入门教材中多次相见、却一直不识真面目的薛定谔方程的本尊!

神奇吗?我们并没有特意追寻前人步伐、去了解过任何量子力学发展史,而仅仅凭借几个简单的线性代数假设、和很少一点经典力学的知识,也能“不经意地”走到这个里程碑前。


4) 总结与预告

到此为止,我们终于来到了量子力学的正殿,拜见了量子力学的两个重要主角。

但更重要的是我们见到它们的方式:通过从第1课开始一路的领悟,用富有“几何意义”的线性代数关系、自然而然地引出了他们。

此时相见,他们不再仅仅是一堆反直觉的物理现象,而是蕴涵着深刻的线性代数本质:

波函数=态矢量在某个表象下(通常是坐标表象 )的具体函数形式,就像向量在某个基底下的具体分量形式一样

薛定谔方程=经典力学中的能量关系改头换面变成算符、并作用在态矢量上后,在坐标表象下展现出的一个具体微分方程形式

这些数学本质将有助于我们继续用这种“悠然见南山”的方式去“发现”和理解更多结论,这一点,我们将会在后面的课程中体会到。

而眼下,我们需要回头来交待前文遗留下来的两个问题:

为什么坐标表象下的动量算符的形式为

为什么态矢量的时间变化率满足

下节课我们来揭晓:

从线性代数到量子力学(9):动量与能量的算符形式​zhuanlan.zhihu.com

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值