合肥工业大学计算机科学起薪,合肥工业大学什么级别?附合肥工业大学专业排名及最低分数线...

e36869a4b6736391401c59c5d9cef476.png

选择科目

测一测我能上哪些大学

cb2fcb36a0bdab80d188e3a8b34e01d3.png

选择科目

领取你的专属报告

>

选择省份

关闭

请选择科目

确定

v>

合肥工业大学是安徽省一所家喻户晓的名牌大学,为教育部直属高校。每年高考后,学校都是众多考生的报考目标,办学实力有目共睹。那么,合肥工业大学什么级别?合肥工业大学专业排名及最低分数线情况如何?

一、合肥工业大学什么级别?

答:国内一流大学,安徽省顶尖高校之一。

学校的具体情况如下:

1、全国一流大学,安徽省第二

1)在校友会2020安徽省大学排名中,合肥工业大学位列全国第48名,安徽省第2名,仅次于中国科学技术大学,办学层次达“中国一流大学”。

2)在软科中国最好大学排名2019中,合肥工业大学位列全国第83名,安徽省第2名。

可见,合肥工业大学办学水平较高,在全国范围内虽逊色于部分高校,但在安徽省却是仅次于中国科学技术大学的顶尖高校。

2、处于211中上游,一流学科建设高校

合肥工业大学曾是著名的全国重点大学,也是211大学之一,且目前已成为了我国的“双一流”建设高校,拥有一门世界一流建设学科。

学校的综合实力较强,虽然不是985高校,但在211高校中位于中等偏上的位置。学校重要的学科建设情况如下:

1)“双一流”建设学科:管理科学与工程(自定);

2)全国第四轮学科评估:马克思主义理论、机械工程、仪器科学与技术、计算机科学与技术、工商管理(B+);

3)ESI全球排名1%学科:化学、工程学、材料科学、计算机科学、农业科学。

其他情况:

3、录取分数线较高,报考难度不小

1)省内

2019年学校合肥校区的理科录取最低分为592分,超一本线96分;文科录取最低分为588分,超一本线38分。

2019年学校宣城校区的理科录取最低分为574分,超一本线78分;文科录取最低分为585分,超一本线35分。

其中,合肥工业大学合肥校区2019年在安徽的理科录取线仅低于中国科学技术大学,文科录取线仅低于安徽大学。

2)省外(部分)

山东:合肥校区2019年理科593分,超一本线79分;文科586分,超一本线44分。

河南:合肥校区2019年理科586分,超一本线84分;文科579分,超一本线43分。

湖北:合肥校区2019年理科587分,超一本线82分;文科578分,超一本线36分。

浙江:合肥校区2019年631分,超本科线36分(新高考,不分文理);

江苏:合肥校区2019年理科375分,超一本线30分;文科359分,超一本线20分(总分480分)。

江西:合肥校区2019年理科589分,超一本线67分;文科577分,超一本线19分。

4、就业率高,薪资水平不低

据学校官网发布的《合肥工业大学2019年毕业生就业质量报告》显示,

1)就业率:本科96.02%,硕士98.24%,博士100.00%;

2)就业薪资:本科生6452元,研究生8210元;

3)就业行业:以制造业,信息传输、软件和信息技术服务业,建筑业三大行业为主。

二、合肥工业大学专业排名及最低分数线

下面以合肥工业大学合肥校区2019年在安徽的理科录取分数为例,从高到底依次将专业进行排列,得出排名榜单。详情如下,仅供参考:

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项圈等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值