原标题:理解Python数据类(上)
雷锋网按:本文为AI研习社编译的技术博客,原标题 Understanding Python Dataclasses — Part 1 ,作者为 SHIVAM BANSAL 。
翻译 | 程添杰 整理 | 余杭
这是一个包含两部分的博文:
这一篇是 Dataclass 的特征概述
下一篇是 Dataclass fields 的概述
引言
Dataclasses 是一些适合于存储数据对象(data object)的 Python 类。你可能会问,什么是数据对象?下面是一个并不详尽的用于定义数据对象的特征列表:
他们存储并表示特定的数据类型。例如:一个数字。对于那些熟悉对象关系映射(Object Relational Mapping,简称 ORM)的人来说,一个模型实例就是一个数据对象。它表示了一种特定类型的实体。它存储了用于定义或表示那种实体的属性。
他们能够被用于和同类型的其他对象进行比较。例如,一个数字可能大于,小于或等于另一个数字。
当然数据对象还有更多的特征,但上述内容足以帮助你理解关键部分。
为了理解 Dataclases,我们将实现一个简单的类。它能够存储一个数字,并允许我们执行上面提到的各种运算。
首先,我们将使用普通的类,然后我们使用 Dataclasses 来实现相同的结果。
但是在我们开始之前,还是要提一下 Dataclasses 的用法。
Python3.7 提供了一个装饰器 dataclass,用以把一个类转化为 dataclass。
你需要做的就是把类包裹进装饰器里:
现在,让我们进一步了解 dataclass 的用法,以及它能为我们改变什么。
初始化
使用 dataclass
以下是使用了 dataclass 装饰器之后的变化:
1. 不必定义__init__然后再赋值给 self, 装饰器会注意这一点
2.我们用一种更可读的方式定义成员属性,并带有类型提示(type hinting)。我们现在立刻就知道 val 的类型是 int。这种方式当然比通常的定义方法可读性更好。
Python 之道:可读性很重要
也可以定义默认值:
对象表示是一种对象的字符串表示法,在调试时非常有用。
默认的 Python 对象表示不是非常的有用:
这种表示法不能给我们对象用途的提示,同时将导致可怕的调试经历。
一种有意义的表示法可以通过在类定义里,添加一种__repr__方法实现。
现在我们就有了一种有意义的对象表示法:
dataclass 会自动添加一个__repr__函数,因此我们不必手动实现它了。
数据比较
通常,数据对象会伴随着相互比较的需要。两个对象'a'和'b'之间通常包含以下的运算:
a < b
a > b
a == b
a >= b
a <= b
在 Python 里,可以通过在类中定义一些方法来实现上述运算。为了保证整篇文章的简洁性,我将只实现 == 和 < 。
......
想要继续阅读,请移步至我们的AI研习社社区:https://club.leiphone.com/page/TextTranslation/745
更多精彩内容尽在 AI 研习社。
不同领域包括计算机视觉,语音语义,区块链,自动驾驶,数据挖掘,智能控制,编程语言等每日更新。
责任编辑: