作为求极限的最强杀器,泰勒展开以它简单粗暴的运算方法,深受工科数学出题老师的喜爱。人们在运用泰勒展开时,在感受到这方法的强大与万能时,也常苦于运算复杂和如何确定展开阶数的问题,在此便稍微论述相关问题。
一.使用泰勒展开的目标
一般情况下,要求的极限是当x趋近于0时的极限,就算x不是趋近于0,也常常可以用换元等方法变成上述类型。使用泰勒后,我们期望也应该得到的式子是多项式除以多项式的形式。
自然,我们也肯定想要分子的最低次数和分母的相同,以便我们可以在趋近0时可以约去,以得到一个常数(带一个无穷小量),极限就这样可以得出。也就是说,我们展开后的目标是这样的:
二.确定展开阶数
一般而言,大部分的这种极限类型为A/B式,A-B式及此二者的结合。
首先看个典型的错题:
这题主要出现了两个问题,放的阶数不够及无穷小量被自动忽略了,出现了x·o(x)等于o(x^3)的错误,这也提示了我们,当我们发现乘出来的无穷小量不能合为一个无穷小量时,很有可能是展开的还不够。至于此题的正确解法希望同学们看完文章后自行给出。
A/B型
正如我们在第一部分所说,我们希望分子分母同阶(或分子阶数比分母更高),一般而言,我们先确定分子或分母的阶数,再按照这个阶数展开另一部分。
例如:
显然分母是三阶的,那就只需要将分子也展开到3阶即可。也就有:
A-B型
但我们平时见到的大部分极限,除了有些我们作为常识的阶数,大部分的分子分母是很难明显看出阶数的,如第一题的分子,这种主要是以A-B的形式存在,对这种式子阶数的确定,我们另有方法。
方法听上去也很简单,一项项比,直到没法消去为止。
比如来确定下面这个式子的阶数。
我们来看看这个式子的两部分,用我们已经背下来的公式套套看(刚开始背不下来多翻翻,抄久了自然背得下来)。
看到这前几项后,注意到相减后前两项都会消失,但x^4项还在,因此我们可以认为,这个式子是4次的。
来看个复杂的题目
先尝试确定分子或分母的阶数,看上去分母更简单,就分母下手。
这样即可得分母为3阶,那将分子每项都展到3阶即可。
三.使用泰勒展开的运算问题
1.不能不写无穷小量!也不要还没取极限就约掉了。泰勒展开是个等式,不是近似等式。
2.当已确定阶数时,遇到AB(A、B都需要泰勒展开时),建议将A和B都展开到该阶数再相乘,否则容易发生像最上面的错例那种情况(分母显然为三阶,分子e^x*sinx这项e^x只展到了2阶,sinx只展到了一阶,导致出现问题。
3.对于乘式的展开和复合函数的展开巨大的运算量,要学会适当估计阶数扔掉太小的无穷小量,特别是复合,复合函数的展开练的多后可以不用两部分都展到同阶数。比如将下面这个式子在x=0展到4阶。
先确定复合,三次根式可以看成1/3次方,使用(1+u)^a的展开式,其中u=1-cosx(注意u应该也要趋近于0,才能使得前一个式子可以进行麦克劳林展开)。
(注意到从第一个式子确定出1-cosx为2阶,第二个式子就不必再展到4阶,展到2阶即可,反正u的三次方至少是x的六次方)
上式中有一项是u^2的化简,注意到我们目标是展到四阶,u*u想要得到四次及以下的项,只可能是x^2项与x^2相乘,就直接得到了1/4x^4。在做乘法或乘方时,找哪几项相乘阶数满足要求比全展开要快得多。
4.多记多用,自然算的快,三大三角函数,e^x,ln(1+x),(1+x)^a的三阶展开最好牢记于心。泰勒也不是死的,和一些化简技术一起用更强。
5.祝大家都能掌握泰勒展开此神器,不惧求极限题。有任何不懂之处也可前来提问,统统欢迎。
这是学委给大家辛苦整理的微积分复习课(尤其是泰勒)
希望大家认真复习呀~
制作不易 感谢学委呀!