对于一个较小的数的阶乘,较容易通过循环和递归去实现。
对于一个较大的数的阶乘,其结果因为位数较多,基本数据类型无法存储。可以考虑用一个数组来保存结果的每一位。如计算7的阶乘,模拟过程如下:
每乘一次,考虑每一位的变化,相邻两位之间只需考虑乘数和进位。
直接看代码和注释:
#include using namespace std;#define N 10000long facLoop(int n) // 循环实现小数的阶乘{long sum=1;for(int i=2; i<=n; i++)sum*=i;return sum;}long facRecur(int n) // 递归实现小数的阶乘{if(n==0)return 1;elsereturn n*facRecur(n-1);}void facBig(int m){/* 大数阶乘,使用数组来存储每一位:1 初始值a[0]=1;2 i=1,2,…,m循环;3 j从1开始循环。逐位乘i并加上前一位的进位,并将前一位只保留个位数; */int a[N]={1};// a[0]=1,其余各位全为0for(int i=2; i<=m; i++)// 阶乘数的循环{a[0] *= i;// 个位做为基准位for(int j=1; j=0; n--)cout<>m;cout<
请输入需要计算阶乘的数:55500555!有1284位,=661408560927794670909833167124276990212353194561078966630610091508066518398462938708570165931453818774346806677937487622941296716409901122180791183381615199180133649323135568584492485536333258769584469786383591661922104266566863913614070698138881545530808522346156055053115762262612679476256481322688203567171111038254916285768948868390683387427561794062346854491689633073215348773710363218016157511181863057926134577070731221701301152592821760868454925199903505386017787199554004695300736714548162986647886019771379144075642172619449355885906311490931562018599832173006150698910081357711177369686310362939324425024584999311539904643730800189147272918915911770251276375152459026027462464002063813902395684537655374791000270699823191370607631655257869634515506590089013974314269381678319888713892407305906053693865079154285101747723299382026182512365914527438847783156831674629869733219475045947728356608604070725171727115599864469722301348700056888092787342824689113236014679770929700834913475709726807511726110607658874785711823552896770088837953463376048502815279955957922924689302538415337162205637471098765281762231617571867644711936978426265600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
-End-