计算机地图制图原理与算法,计算机地图制图原理与方法-基本图形生成算法.ppt...

本文深入探讨了计算机图形学中直线和圆的生成算法,包括数值微分法、中点画线法和Bresenham算法。讲解了直线生成的基本思路,如DDA算法和中点画线法的实现,并通过实例展示了Bresenham算法的高效性。同时,介绍了圆的生成算法,如圆弧扫描算法和中点画圆法,以及椭圆的生成原理。这些算法对于理解和实现图形绘制至关重要。
摘要由CSDN通过智能技术生成

《计算机地图制图原理与方法-基本图形生成算法.ppt》由会员分享,可在线阅读,更多相关《计算机地图制图原理与方法-基本图形生成算法.ppt(35页珍藏版)》请在人人文库网上搜索。

1、第三章 基本图形生成算法图形,本章将主要研究在光栅显示器上的直线、圆、椭圆等的生成算法。,内存,显存或缓存,设备阵列,图形函数入口 LINE()等,主机,显卡、其他接口,确定象素位置 写入颜色等属性,显示器、打印机等,由驱动程序写入设备 D/A转换,显卡口 并行口 USB口,内存插槽,CPU,GPU:生成点阵图形,运行图形程序,D/A转换:图形显示,基本图形的生成,几何图形i | Pi 最接近图形的象素 基本图形的生成算法任务之一就是找出所有的i .,点表示为象素(Pixel),对应于显存地址单元 读写某一象素是硬件设备提供的最基本功能 一维图形,由一个象素宽的直线或曲线表示 二维图形由确定区。

2、域的象素表示 线图元的扫描转换是基本图形生算法的基础;,3.2、直线的生成算法 即是找出逼近直线的一组象素,按扫描线顺序,对这些象素进行写操作。 3.2.1. 数值微分法() 假定直线的起点、终点分别为:(X0,Y0), (X1,Y1),且都为整数。,(X i+1 ,Yi + k),(X i , Int(Yi +0.5),(X i , Yi),栅格交点表示象素点位置,直线的斜率: k = (Y1-Y0)/(X1-X0) 为讨论方便,假定 |k|=1 直线方程: = k*X+B 设的增量为x=,可得如下的增量方程: Yi+1 = k Xi+1 + B = k (Xi + Dx) + B = kX。

3、i + B + k Dx = Yi + k Dx = Yi + k,画直线的DDA算法,从起点开始朝终点方向 画点(x, y) 在x轴或y轴上走一个单位长(沿x轴还是y轴取决于直线的倾斜角) 由直线的倾斜程度(斜率或斜率的倒数)决定另一坐标的增量,获得下一点的座标 将x或y四舍五入,得(x, y) 若(x, y)不是终点则继续,起点,终点,未四舍五入前,最后选定的点,1,7,2,3,4,5,6,0,8,9,1,2,3,4,5,6,7,8,0,void DDALine(int x0,int y0,int x1,int y1,int color) int x; float dx, dy, y, k。

4、; dx = x1-x0; dy=y1-y0; k=dy/dx;y=y0; for (x=x0;x= x1;x+) SetPixel (x,int(y+0.5),color); y=y+k; ,缺点: 浮点运算、取整废时,且不利于硬件实现。 问题:为什么k?,若k, 上述算法会出现什么情况?应如何处理?,3.2.2 生成直线的中点画线算法,假定直线斜率k在01之间,当前象素点为(xp,yp),则下一个象素点有两种可选择点P1(xp+1,yp)或P2(xp+1,yp+1)。若P1与P2的中点(xp+1,yp+0.5)称为M,Q为理想直线与x=xp+1垂线的交点。当M在Q的下方时,则取P2应为下一。

5、个象素点;当M在Q的上方时,则取P1为下一个象素点。这就是中点画线法的基本原理,过点(x0,y0)、(x1, y1)的直线段L的方程式为F(x, y)=ax+by+c=0,欲判断中点M在Q点的上方还是下方,只要把M代入F(x,y),并判断它的符号即可。为此,我们构造判别式: d=F(M)=F(xp+1, yp+0.5)=a(xp+1)+b(yp+0.5)+c 当d0时,M在L(Q点)上方,取P1为下一个象素; 当d=0时,选P1或P2均可,约定取P1为下一个象素;,若当前象素处于d=0情况,则取正右方象素P1(xp+1, yp),要判下一个象素位置,应计算 d1=F(xp+2, yp+0.5)。

6、=a(xp+2)+b(yp+0.5)=d+a,增量为a。 若d0时,则取右上方象素P2(xp+1, yp+1)。要判断再下一象素,则要计算d2= F(xp+2, yp+1.5)=a(xp+2)+b(yp+1.5)+c=d+a+b ,增量为ab。画线从(x0, y0)开始,d的初值 d0=F(x0+1, y0+0.5)=F(x0, y0)+a+0.5b,因 F(x0, y0)=0,所以d0=a+0.5b。 其中,a=y0-y1, b=x1-x0, c=x0y1-x1y0。,void MidpointLine (int x0,int y0,int x1, int y1,int color) int。

7、 a, b, d1, d2, d, x, y; a=y0-y1; b=x1-x0;d=2*a+b; d1=2*a;d2=2* (a+b); x=x0;y=y0; while (x=x1) SetPixel (x, y, color); if (d0) x+;y+; d+=d2; else x+; d+=d1; /* while */ /* midPointLine */,中点画线算法示例,起点,终点,初始值:a=-4; b=7; d= 2*a+b=-1;d1=2*a=-8; d2=2*(a+b)=6,1、X0=0, Y0=0, d=-1,2、X1=1, Y1=1, d=5,3、X2=2, Y2。

8、=1, d=-3,4、X3=3, Y3=2, d=3,5、X4=4, Y4=2, d=-5,6、X5=5, Y5=3, d=1,7、X6=6, Y6=3, d=-7,7,1,2,3,4,5,6,1,2,3,4,5,6,7,8,0,0,8、X6=7, Y6=4, d=-1,3.2.3 生成直线的Bresenham算法,原理:,假定直线斜率,01 时 d=d-1 ; 当d=0.5取 (x+1,y),否则取(x+1,y+1)。令e=d-0.5, 显然 e 的初值为-0.5。这样可用e的符号来进行判断。,void Bresenhamline (int x0,int y0,int x1, int y1,。

9、int color) int x, y, dx, dy; float k, e; dx = x1-x0;dy = y1- y0;k=dy/dx; x=x0,;y=y0; e=-0.5; for (i=0;i=dx;i+) Setpixel (x, y, color); x=x+1;e=e+k; if (e0) y+; e=e-1; ,程序如下:,思考题: 如何去除上述程序中的浮点运算、乘除法?,void Bresenhamline (int x0,int y0,int x1, int y1,int color) dx = x1-x0,;dy = y1- y0,;e=-dx; x=x0; y=y。

10、0; for (i=0; i=dx; i+) Setpixel (x, y, color); e=e+2*dy; x+; if (e0) y+; e=e-2*dx ,程序改进,从速度考虑,还有那些可以改进?,Bresenham画线算法示例,起点,终点,初始值:dx=7; dy=4; k= 4/7 e=-7/14,1、X0=0, Y0=0, e=1/14,2、X1=1, Y1=1, e=-5/14,3、X2=2, Y2=1, e=3/14,4、X3=3, Y3=2, e=-3/14,5、X4=4, Y4=2, e=5/14,6、X5=5, Y5=3, e=-1/14,7、X6=6, Y6=3, 。

11、e=7/14,7,1,2,3,4,5,6,1,2,3,4,5,6,7,8,0,0,8、X6=7, Y6=4, e=1/14,讨论象素点的选取是否有规律?有何用,直线生成算法的改进,如何利用上述算法实现任意直线的绘制?,关于线型线宽的说明,实线就是将选到所有的点都画出来 虚线就是在所选的点中选相邻的几个画,然后接着相邻的几个不画 点线就是在所选的点中,每隔几个就画一个 线宽只对实线有效,实际上就是根据其倾斜角然后选定是在选中的点的(x+-width/2, y)或者(x, y+-width/2)也画出来,相当于一把近似垂直于直线的刷子,关于多边形和圆形的作图,多边形 确定多边形的顶点 用直线顺序连。

12、接起来 圆形 根据圆的对称性将其扩展到四个象限即可获得整圆,二、圆的生成算法 即是找出逼近圆的一组象素,按扫描线顺序,对这些象素进行写操作。 下面仅以圆心在原点的圆为例,讨论圆的生成算法。 1. 圆弧扫描算法 X2 + Y2 = R2,Y = Sqrt(R2 - X2) 在一定范围内,每给定一X值,可得一Y值。 当X取整数时,Y须圆整。 缺点:浮点运算,开方,圆整,不均匀。 2. 角度DDA法 x = x0 + Rcos y = y0 + Rsin,dx =- Rsind dy = Rcosd xn+1 =x n + dx y n+1 =y n + dy xn+1 =x n - (y n - 。

13、y 0 )d y n+1 =y n + (x n - x 0 )d 显然,确定x,y的初值及d值后,即可以增量方式获得圆周上的坐标,然后取整可得象素坐标。但要采用浮点运算、乘法运算。,3. 中点法 利用圆的对称性,只须讨论1/8圆。,M,P1,P2,P(Xp ,Yp ),P为当前点亮象素,那么,下一个点亮的象素可能是P1(Xp+1,Yp)或P2(Xp +1,Yp +1)。,构造一函数: F(X,Y)=X2 + Y2 - R2 F(X,Y)= 0 (X,Y)在圆上; F(X,Y) 0 (X,Y)在圆外。 M为P1、P2间的中点,M=(Xp+1,Yp-0.5) 有如下结论: F(M)= 0 取P2。

14、 为此,可采用如下判别式:,d = F(M) = F(xp + 1, yp - 0.5) =(xp + 1)2 + (yp - 0.5) 2 - R2 若d0, 则P1 为下一个象素,那么再下一个象素的判别式为: d = F(xp + 2, yp - 0.5) = (xp + 2)2 + (yp - 0.5) 2 - R2 = d + 2xp +3 即d 的增量为 2xp +3.,若d=0, 则P2 为下一个象素,那么再下一个象素的判别式为: d = F(xp + 2, yp - 1.5) = (xp + 2)2 + (yp - 1.5) 2 - R2 = d + 2(xp - yp) + 5。

15、 即d 的增量为 2 (xp - yp) +5. d的初值: d0 = F(1, R-0.5) = 1 + (R-0.5)2 - R2 = 1.25 - R,MidpointCircle(int r) int x,y; float d; x=0; y=r; d=1.25-r; while(xy) setpixel(x,y); if(d0) d+ = 2*x+3; x+ else d+ = 2*(x-y) + 5; x+;y-; ,该程序如何改进,提高效率?,Bresenham画圆算法,讨论、圆的中点算法与Bresenham算法是否一致?,椭圆的生成算法,F(x,y)=b2x2+a2y2-a2b。

16、2=0 椭圆的对称性,只考虑第一象限椭圆弧生成,分上下两部分,以切线斜率为-1的点作为分界点。 椭圆上一点处的法向: N(x,y) = (F) x i + (F) y j = 2b2 x i + 2a2 y j,在上半部分,法向量的y分量大 在下半部分,法向量的x分量大,上半部分,下半部分,法向量 两分量相等,M1,M2,在当前中点处,法向量( 2b2 (Xp+1) ,2a2 (Yp-0.5)的y分量比x分 量大, 即: b2 (Xp+1) a2 (Yp-0.5), 而在下一中点,不等式改变方 向,则说明椭圆弧从上部分转入下部分,椭圆的中点画法,与圆弧中点算法类似:确定一个象素后,接着在两个候。

17、选象素的中点计算一个判别式的值,由判别式的符号确定更近的点 先讨论椭圆弧的上部分 设(Xp,Yp)已确定,则下一待选像素的中点是(Xp+1,Yp-0.5) d1=F(Xp+1,Yp-0.5)= b2(Xp+1)2+a2(Yp-0.5)2-a2b2,根据d1的符号来决定下一像素是取正右方的那个,还是右上方的那个。 若d10,中点在椭圆内,取正右方象素,判别式更新为: d1=F(Xp+2,Yp-0.5)=d1+b2(2Xp+3) d1的增量为b2(2Xp+3) 当d10,中点在椭圆外,取右下方象素,更新判别式: d1=F(Xp+2,Yp-1.5)=d1+b2(2Xp+3)+a2(-2Yp+2) d。

18、1的增量为b2(2Xp+3)+a2(-2Yp+2),d1的初始条件:椭圆弧起点为(0,b); 第一个中点为(1,b-0.5) 初始判别式:d10=F(1,b-0.5)=b*b+a*a(-b+0.25) 转入下一部分,下一象素可能是正下方或右下方,此时判别式要初始化。 d2 = F(Xp+0.5,Yp-1) = b2(Xp+0.5)2+a2(Yp-1)2-a2b2 若d2=0,取正下方像素,则d2 = F(Xp+0.5,Yp-2) = d2 + a2(-2Yp+3) 下半部分弧的终止条件为 y = 0,程序:void draw_Ellipe_Mid(int a,int b) int x,y; float d1,d2; x = 0; y = b; d1 = b*b +a*a*(-b+0.25); while( b*b*(x+1) =0) SetPixel(x,y); if (d2 0) d2 +=b*b*(2*x+2)+a*a*(-2*y+3); x+; y-; else d2 += a*a*(-2*y+3); y-;。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值