各位知乎儿好,几个月前,笔者曾写过一篇关于vgg,resnet,inception以及inception_resnet等深度图像分类网络的结构详解。除这些网络外,后续还有许多在图像分类任务上表现优异的网络,如DenseNet, ResNext, Xception, PolyNet, DPN(Dual Path Network), SENet, MobileNet, ShuffleNet, SqueezeNet以及最近非常火爆的NASNet等。本文中将对前五个网络的结构特点进行简单介绍,有想要展开了解的同学可以查看每一节后附的连接。
1. DenseNet
纵观深度分类网络的发展史,前人的工作总致力于加深网络层数或拓宽网络宽度,DenseNet从特征的角度出发,通过紧密连接实现特征复用,既大幅度减少了参数量,也有效地缓解了梯度消失现象。
DenseNet的特色是紧密连接,将每一层的输出导入后面的所有层,与ResNet的相加不同的是,Dense Block中使用的是连接结构(concatenate)。这样的结构在减少网络参数的同时&#x

本文介绍了深度图像分类网络DenseNet, ResNext, Xception, PolyNet, DPN的特点。DenseNet通过紧密连接实现特征复用;ResNext结合ResNet和VGG堆叠策略,采用grouped convolutions;Xception是Inception的进阶版,使用depthwise separable convolution;PolyNet是多项式网络,结合Inception和ResNet;DPN结合DenseNet和ResNet,利用HORNN结构。"
111487264,10294734,FPGA实现的自适应旁瓣对消技术在雷达干扰抑制中的应用,"['雷达技术', 'FPGA实现', '干扰抑制', '自适应滤波', '电子工程']
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



