摘自:
闵忠荣,丁帆.基于百度热力图的街道活力时空分布特征分析——以江西省南昌市历史城区为例[J].城市发展研究,2020,27(02):31-36.
如需查看全文,请点击文末“阅读原文”。密码:d0qg
关键词:百度热力图;街道活力;时空分布
0 引言
街道活力一直以来都是城市规划理论和实践长期关注的议题,随着我国城市发展由增量规划向存量规划的转型,在历史城区更新保护、街道空间设计中更加注重活力的营造。在《交往与空间》一书中,扬·盖尔提出“慢速交通意味着富于活力的城市”。街道活力作为城市活力的外在表征,其核心为街道上从事各种活动的人。本文认为街道活力是人在街道上所进行的各种多样性的活动,进而对周边环境等产生吸引和影响,以至街道上发生或进行着各种富于活力的事件,最直接的表现是人群在街道空间活动集聚程度的强弱。
随着科学技术、大数据的发展,在城市规划领域有部分学者对百度热力图进行了探索,如吴志强基于热力图进行上海中心城区的空间结构研究,王录仓基于百度热力图对武汉市主城区城市人群聚集程度进行时空分析等,这些学者为百度热力图在城市规划领域的应用打下了基础。本文试图利用百度热力图数据,从人的行为活动出发,时间和空间维度上动态地来分析老城区内街道活力的变化特征。为老城区的活力塑造及历史城区、历史街区保护更新提供依据和参考。
1 研究对象与数据
1.1 研究对象
本文以南昌市历史城区内的街道为研究对象,具体范围为南昌市历史城区的范围,北起阳明路,南至洪城路,西起赣江、抚河,东至八一大道,面积为8.28km2。
1.2 研究数据及处理
为研究需要,本文选取南昌市老城区连续一周时间(2018年11月24日到2018年11月30日)的百度热力图进行跟踪并定时截取,截取时间间隔为40分钟,总计截取百度热力图182张,以此作为本文研究的重要数据。基于ArcGIS10.4工具,对所采集的数据分别进行定义投影和地理配准,通过按属性分类将不同的热力值分为1—9级。考虑到周期相似性,所以本文选取了周一(图1)和周日(图2)分别代表工作日和休息日来进行街道活力的可视化分析。



2 街道活力的时空变化特征
为进一步发现街道空间和时间变化状况,计算各等级街道空间集聚量与所有街道的相对