泰坦尼克号数据集_sklearn实践项目:泰坦尼克号生存率预测

该博客通过分析泰坦尼克号数据集,预测乘客的生存率。首先,对数据进行采集、导入和基本信息查看,发现数据中存在缺失值。接着,对数值型和字符串型缺失值分别进行处理,采用平均值填充数值型,用最常见值填充分类数据。然后,对分类数据进行编码,并提取关键特征,如性别、登船港口、客舱等级和乘客头衔。通过相关系数法选择特征,并利用逻辑回归建立模型。最后,将模型应用于测试数据集,生成预测结果,用于提交到Kaggle平台。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

de9a1f169590c698be6de95118378a02.png

此次进行分析的数据集来自Kaggle,链接如下

数据集下载链接​www.kaggle.com

1.提出问题

什么样的人在泰坦尼克号中更容易存活?

2.理解数据

2.1采集数据

从上面给出的链接里面将泰坦尼克号项目相关的数据集下载下来,包括gender_submission,test和train三个数据集,并在网站上对数据集内包含的信息有一个初步的认识。

50250eaa9850238d51fe8052d68e0d87.png
数据集里面的变量的定义

ddcf339597b114726773de05ed1c845a.png
官网对变量的说明

2.2导入数据

# 忽略警告提示
import warnings
warnings.filterwarnings('ignore')

#导入处理数据包
import numpy as np
import pandas as pd

#导入训练数据集
train=pd.read_csv('/Users/huang/Python/3.泰坦尼克号/train.csv')
#导入测试数据集
test=pd.read_csv('/Users/huang/Python/3.泰坦尼克号/test.csv')

#查看数据集的概况
print('训练数据集:',train.shape,'测试数据集:',test.shape)

输出结果:

训练数据集: (891, 12) 测试数据集: (418, 11)

从结果可以看到,测试数据集中少的一个变量,这个变量就是生存率预测。因为我们的目的是生成模型来预测生存率,因此测试数据集没有这个变量。

#为了方便同时对训练数据和测试数据进行清洗,需要将两个数据集合并
full=train.append(test,ignore_index=True)
print('合并后的数据集:',full.shape)

输出结果:

合并后的数据集: (1309, 12)

2.3查看数据集信息

#查看合并后的数据集信息
full.head()

输出结果:

35d1761cc9661ef655da31079857c1ba.png
'''使用discribe获取数据类型列的描述统计信息;需要注意discribe只能显示出数据类型的列信息,对于其他类型的数据不显示,比如字符串类型姓名(name),客舱号(Cabin)
这很好理解,因为描述统计指标是计算数值,所以需要该列的数据类型是数据'''
full.describe()

输出结果:

9c54d25f051d1ffdf4b1c7881909ea80.png
#查看缺失数据
#使用info方法,查看每列的数据总数和数据类型
full.info()

输出结果:

fa1d4817e993f5aa2d9c16b1370abd29.png

可以看到总共有1309行数据,其中有缺失数据的列包括年龄(Age)、船舱号(Cabin)、登船港口(Embarked)、船票价格(Fare),属于数据类型的是年龄和船票价格,属于字符串类型的是船舱号、登船港口

其中:

年龄项总数据为1046,缺失了263项,缺失率约为20%;

船票价格总数据为1308,缺失了1项;

登船港口总数据为1307,缺失了2项;

船舱号总数据为295,缺失了1014项,缺失率约为77.5%,缺失较多。

此处先将数据缺失的情况列明,方便后续进行针对性处理。

3.数据清洗

3.1数据预处理

缺失值处理

很多机器学习算法为了训练模型,要求所传入的特征中不能有空值,因此需要事先对缺失值进行处理。常见处理的方法包括:

  • 数值类型,可用平均值填充
  • 分类数据,可用最常见的类别填充
  • 使用模型预测缺失值

3.1.1数据类型缺失值的处理

从前面我们可以得到年龄和船票价格的缺失值是数据类型,因此这里需要对数据类型的缺失值进行处理。

#使用平均值对年龄和船票价格列缺失值进行填充
#年龄(Age)
full['Age']=full['Age'].fillna( full['Age'].mean() )
#船票价格(Fare)
full['Fare'] = full['Fare'].fillna( full['Fare'].mean() )
print('处理后:')
full.info()

输出处理后的结果:

3f3db1d879310a759de521269c45d931.png
#检查数据处理是否正常
full.head()

输出结果:

b869e32176efc991ce9dbd3dcc985164.png

3.1.2字符串类型缺失值的处理

字符串类型缺失列分别为登船港口(Embarked)和船舱号(Cabin),下面先来处理登船港口列。

  • 登船港口(Embarked)
#查看登船港口列里面数据样貌
full['Embarked'].head()

输出结果为:

3b1dafc8692efb788cb1bb6dc553ac82.png

由数据下载页面给出的信息,我们可以知道S=英国南安普顿Southampton;C=法国 瑟堡

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值