y空间兑换代码_重磅!李航《统计学习方法》Python 代码更新,适应第二版!

b43dc59288a14ba2db80365bda605d08.png

红色石头的个人网站:

红色石头的个人博客-机器学习、深度学习之路​www.redstonewill.com
991310d9f0d9c7109a5e1607e824c3c3.png

李航的《统计学习方法》可以说是机器学习的入门宝典,许多机器学习培训班、互联网企业的面试、笔试题目,很多都参考这本书。之前,红色石头在本公众号上也发表过一些关于这本书的一些笔记和 Python 代码,目的是给大家啃这本书带来一些便利。刚刚,红色石头发现黄海广博士在自己的 GitHub 上又更新了《统计学习方法》的 Python 代码,就迫不及待地分享给大家。

缘由是《统计学习方法》第一版还是 2012 年出版的,包含了众多主要的监督学习算法与模型。2019 年 5 月 1 日,《统计学习方法》第二版正式发布,通过 6 年时间的努力,在第一版的基础上又增加了无监督学习的主要算法与模型。

dac87f2909d751dd33bac63aa0582ce2.png

第二版的目录为:

第1篇 监督掌习

第1章统计学习及监督学习概论
第2章感知机
第3章k近邻法
第4章朴素贝叶斯法
第5章决策树
第6章逻辑斯谛回归与优选熵模型
第7章支持向量机
第8章提升方法
第9章EM算法及其推广
第10章隐马尔可夫模型
第11章条件随机场
第12章监督学习方法总结第2篇无监督学习
第13章无监督学习概论
第14章聚类方法
第15章奇异值分解
第16章主成分分析
第17章潜在语义分析
第18章概率潜在语义分析
第19章马尔可夫链蒙特卡罗法

第20章 潜在狄利克雷分配

第21章 PageRank算法

第22章 无监督学习方法总结

附录A 梯度下降法

附录B 牛顿法和拟牛顿法

附录C 拉格朗日对偶性

附录D 矩阵的基本子空间

附录E KL散度的定义和狄利克雷分布的性质

针对新增加的内容,黄海广博士对原有的 GitHub 源码进行新内容的更新,直接放上地址:

https://github.com/fengdu78/lihang-code

本次修改了部分错误,增加了每章概述,更新完前 12 章,今后将增加第二版的内容。

修改主要错误包括:

  • 第3章 k近邻法的max_count错误
  • 第10章 隐马尔可夫模型的viterbi索引错误

增加的内容:

  • 增加每章的概要

项目目前包含的内容截图如下:

288bb338e8401f0bf3a4eb30192b1008.png

目前,该项目已经收获 5000+ 的 star 了。

Python 代码

下面,以支持向量机为例,我们可以查阅 SVM 的完整示例代码:

class 

其实,我看了下,项目中不仅包含 SVM 的示例代码,同时也有对应的读书笔记和概括总结。

《统计学习方法》课件

作者袁春:清华大学深圳研究生院,提供了第一版全书 12 章的 PPT 课件。

366c9bacab7744151860ebcf6e8bcb41.png

fd6fa3b3f75368e67b62e13e9409665b.png

f92e4581f475e4e679d2a0c6a568036c.png

课件获取地址:

链接:https://pan.baidu.com/s/1_boHMIg6DqS7bgFuxlWF7Q 提取码:ffxy

附加资源

总结整理我之前发表过的关于李航《统计学习方法》的相关资源,汇总如下,详见文章:

李航《统计学习方法》读书笔记

李航《统计学习方法》最新资源,笔记、Python 代码一应俱全!

《统计学习方法》的 Python 代码来了

参考资料:

https://github.com/wzyonggege/statistical-learning-method

https://github.com/WenDesi/lihang_book_algorithm

https://blog.csdn.net/tudaodiaozhale

256302d2e51ae68e31d854555364c049.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值