gdiplus判断一个点是否在圆弧线上_谁是最可怕的压轴题?圆的轨迹

ac760af54bd445ac046e12d431ec4175.png

在中考,关于圆的轨迹问题也属于中考压轴题的高发区了。这类问题有两种考法:

(1)求轨迹的长度;

(2)求线段的最值问题。

对于圆的轨迹长度,只要确定了轨迹圆弧对应的圆心角,即可求解,而对于线段的最值问题,一般而言,也是分为两类:定点到圆上动点的最值问题和传说中的阿氏圆,关于最值问题,下次再出一个专题来讲一讲,今天重点把隐藏的圆找出来。

先上题:

2019年江苏宿迁压轴题27题第3小题:

737cd19292debe795f1c3ab1734a6b15.png

2018年广州25题压轴题第3小题:

eea1c5104610805ac96779a614a04d7a.png

还有一些选择题和填空题的考查,都是来源于圆的轨迹。很多同学看到这类问题,肯定心中一万匹小马呼啸而过,这哪里有圆?!不都是四边形,转来转去的嘛····能够直接看到的圆的,那本质上其实都是考查三角形的问题,如果你回顾你解决圆的问题应用的相关知识,你一定会认同我说的这个观点。

所以为了搞清楚明白这个圆的轨迹是如何出现的,我们得回顾什么情况下的点的运动会是一个“你看不见的圆”:

上笔记:

caf2b3f57792457dc36ba5fc1ec720fd.png

上面的三种情况,就是我们常常遇到的三种情况的点的运动情况,当然问题中是不会把圆画出来的,多么“阴险狡诈手段”!但当你看到上面三类特点时,你能否回忆出那个被隐藏可爱的圆,那就看你的觉悟了。

作为资深吃瓜老师,为了帮助大家把这个“瓜”吃的更香一些,当然要总结一些生活中常见的圆轨迹模型了。

(一)墙角模型

下面的这个模型,我亲切的称之为“墙角模型”(来源于一次对墙角的观察),那是在一个风和日丽的日子,我看见一根竹竿,已45度斜靠在一个墙角,忽如一阵春风,竹竿在暖风的轻抚下,开始向地面滑落,看到这优美的一幕,我犀利的小眼神观察到:这个竹竿的中点M在空中划过了一道优美的圆弧线。本着大胆的假设,小心求证,经严密的推理,的确是一道优美的圆弧线(请大家想象一下M优美的圆弧线):

943bba2340182bfd596bf806115cad45.png
圆的轨迹

当然,除了中点,我也观察了除AB中点M的其他点的轨迹,看得我老眼昏花。在我全神贯注的观察下,绝对不是圆的轨迹:采用最极端的取特殊点的方法,比如A点,就是始终靠墙角的直线轨迹。那么AB直线中任意一点(除了中点M)的点的轨迹是什么呢?有兴趣的同学可以自己推导,假设任意一点C,AC/BC=a,a>0,应用坐标系的方法,找出点C横坐标与纵坐标的关系:

0916a6d960fdc23ba81e3c0394c241ab.png

了解过高中椭圆方程知识,通过C点x与y的轨迹方程,可以知道是一个椭圆,不了解也无伤大雅,可以通过描点作图画一画也能看得出来。

ps:在初中,掌握中点的轨迹即可。

当然,作为看过我文章的同学都知道,我们肯定并不满足于墙角是直角的这种情况,而且现实生活中并非所有墙角都是直角,比如意大利的比萨斜塔:

43a7e859ffe245a824f02bd070787f70.png

所以,我有吭哧吭哧研究了墙角为非直角的情况,此时竹竿还是那个竹竿,还是在两面墙滑动,此时滑竿AB上是否存在某个点的轨迹是圆弧呢?就像为直角时的M点一样,轨迹为圆弧,试着想一想这个问题,动手找一找。回顾一下上面M点的特点。

952a3b6e3eb4edf9e24de54a67598b50.png

从上面垂直墙角的M点是圆弧的情况,可以肯定一点有某个点仍是圆弧轨迹,相当于为直角时的M点。只不过这个点是否在AB上呢?

其实,通过上面定长AB对应定角(90度)滑动,我们知道,墙角O、A、B三个点在一个圆上,且AB刚好就是直径,M就是这个圆的圆心,也就是三角形AOB的外接圆的圆心。

所以,当墙角不是90度,A、B、O仍然是定长对定角的圆的轨迹,三点共圆,且由于AB、墙角固定,因此该圆的直径也是固定的,等于AB/sin(

)[当AO或BO为直径时求出]。

此时三角形ABO的外接圆的圆心M’(等效于M)到O点的距离为定值,O固定,也就是,M‘是O为圆心,半径为AB/2sin(

)的圆弧:

38e39377885100eba88022849b1c24e9.png

不得不说,简直是妙啊!

c61b9bf39c0a9d16c6f747b3f02ee474.png

随着墙角模型的深入研究,还有很多很多隐藏在背后的“很多秘密”,我们继续看一个这样的情况:

当一个固定三角形的一边(两个顶点A、B)在垂直的两面墙上滑动,那么第三个顶点C的轨迹又是否是一个圆呢?为了简化这个问题,我们可以先考虑特殊的图形,比如说是等腰直角三角形,这里可以尝试探索探索、挖掘挖掘····

af775d00bd8786bd2c6bd05b71ac9e70.png

上面的这个解法,你应该发现这里面有一个非常特殊的特征,就是顶点C的角度与墙角是互补的,这时,我们知道A、O、B、C这四个点是共圆的,但C点的轨迹却变成了一条直线轨迹!准确的说,是一条线段!关于直线轨迹的条件情况,可以参考前一篇文章:

康大叔:谁最可怕的压轴题?——直线运动轨迹​zhuanlan.zhihu.com
2cee22d7fcbc8619449bfae434f5c2ef.png

直线和圆还真是兄弟好得难舍难分呀!

所以,在四点共圆的条件下,我们可以得到更广泛的情况:

ad341b6b13bf54ebd8edcd5403a6033f.png

所以看到这里,你知道为什么我把这个叫做墙角模型了吧。不仅仅有圆,还有直线,我们画出来看一看,不得不说,还真的是有那么几分“撬墙角”的意思:

6f6d484d2010ed534ecdb7a3fabd5654.png

当然,如果你有兴趣,你还可以把条件推广到一个更广泛的范围:

那就是墙角与三角形的顶角C没有180度的特殊关系:三角形ABC是任意的三角形,墙角O的角度也是任意的,此时C的轨迹又是什么呢?(有兴趣的同学可以自行猜想-探索-加证明)。

(二)豆瓜模型

还有一类常见的圆的轨迹,一个定点,另外一个动点在圆上运动,这两个点的线段上的任一点的运动都是圆的轨迹,可以这么说,这是因为动点P的原因造成的,所以大家称为“豆瓜模型”,看过直线轨迹专题的同学应该都有所了解。

0756aa5ecc6efbe86dbf4b9c6cb49169.png

(三)动直线对称圆模型

这个模型其实就是定角和定长的一种特殊情况:

b761dfb63a77e77c7cda5ece768aa80d.png

通过观察条件找出“被隐藏的圆”是我们解决这类问题的根本,弄明白文中出现的三个模型:墙角模型、豆瓜模型和动直线对称模型,再也不用担心找不到圆了。

找出了圆,确定起点和终点,求出圆心角,就可以愉快的求轨迹长度了。

我是康大叔,一名理论结合实际,思想融于方法的吃瓜老师。欢迎大家点赞+喜欢+收藏,分享给自己想帮助的人呦,慢慢吸收,用心消化。大家的点赞是我更新的动力呀!

cb803502e8a34d010766f2832c5d5590.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值