摘要
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?
一、前言
本系列文章为《剑指Offer》刷题笔记。
刷题平台:牛客网
书籍下载:共享资源
二、题目
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)
1、思路
数组分析:下图是我们计算数组(1,-2,3,10,-4,7,2,-5)中子数组的最大和的过程。通过分析我们发现,累加的子数组和,如果大于零,那么我们继续累加就行;否则,则需要剔除原来的累加和重新开始。
过程如下:
2、代码
C++:
C++
class Solution {
public:
int FindGreatestSumOfSubArray(vector array) {
if(array.empty()){
return 0;
}
// 初始化变量,maxSum为最大和,curSum为当前和
int maxSum = array[0];
int curSum = array[0];
// 遍历所有元素
for(int i = 1; i < array.size(); i++){
// 如果当前和小于等于0,说明之前的是负数,则抛弃前面的和,重新计算
if(curSum <= 0){
curSum = array[i];
}
// 如果没有问题,直接累加
else{
curSum += array[i];
}
// 更新最大和
if(curSum > maxSum){
maxSum = curSum;
}
}
return maxSum;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27classSolution{
public:
intFindGreatestSumOfSubArray(vectorarray){
if(array.empty()){
return0;
}
// 初始化变量,maxSum为最大和,curSum为当前和
intmaxSum=array[0];
intcurSum=array[0];
// 遍历所有元素
for(inti=1;i
// 如果当前和小于等于0,说明之前的是负数,则抛弃前面的和,重新计算
if(curSum<=0){
curSum=array[i];
}
// 如果没有问题,直接累加
else{
curSum+=array[i];
}
// 更新最大和
if(curSum>maxSum){
maxSum=curSum;
}
}
returnmaxSum;
}
};
Python:
Python
# -*- coding:utf-8 -*-
class Solution:
def FindGreatestSumOfSubArray(self, array):
# write code here
if len(array) == 0:
return 0
maxSum = array[0]
curSum = array[0]
for each in array[1:]:
if curSum <= 0:
curSum = each
else:
curSum += each
if curSum > maxSum:
maxSum = curSum
return maxSum
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17# -*- coding:utf-8 -*-
classSolution:
defFindGreatestSumOfSubArray(self,array):
# write code here
iflen(array)==0:
return0
maxSum=array[0]
curSum=array[0]
foreachinarray[1:]:
ifcurSum<=0:
curSum=each
else:
curSum+=each
ifcurSum>maxSum:
maxSum=curSum
returnmaxSum