计算机视觉 滑动窗方法,图像分割相关技术之滑动窗口、RPN以及anchor box简介

本文介绍了计算机视觉中的图像分割技术,包括滑动窗口、选择性搜索(selective search)、区域提议网络(RPN)以及Anchor Box的概念。滑动窗口通过固定大小的窗口进行对象识别,而RPN在 Faster R-CNN 中用于产生区域提议,Anchor Box则解决了多尺度对象检测的问题。
摘要由CSDN通过智能技术生成

图像分割相关技术之滑动窗口、RPN以及anchor box简介

标签:##

时间:2019/11/17 11:07:25

作者:小木

对象识别(object recognition)是计算机视觉(computer vision)中的一种任务。根据维基百科的定义,它的目的是为了寻找并识别某个图像或者是视频序列中的对象。对象识别中的一项基础工作是进行图像分割,找出包含对象的区域。本文简要介绍图像分割中相关的selective search、region proposal networks以及anchor box的概念。

[TOC]

#### 一、图像分割简介

对象识别(object recognition)是计算机视觉(computer vision)中的一种任务。根据维基百科的定义,它的目的是为了寻找并识别某个图像或者是视频序列中的对象。

在很长的一段时间内,对象识别都要求他们的区域是事先划定(delineated)好的。这个问题产生了图像分割任务,该分割旨在通过通用算法对图像进行唯一的分割,每一个分割应该包括了一个对象。

换句话说,图像分割的目的是将一副图像根据色彩、纹理等特征将图像划分成几个互不相交的区域,每个区域内具有一致或者相似的特征。

但是图像分割问题有一些挑战。

- 首先,图像都是有层次的,以下图为例,沙拉和勺子都在碗里,而碗是在桌子上的。因此,根据目的不同以及图片所处的环境,图片中的对象都是有层次的。这就导致了图像分割必须是带层次的。

![](http://www.datalearner.com/resources/blog_images/8b8d92b6-fc17-4179-bde0-dbca197d6e88.jpg)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值