qr分解求线性方程组_【2.6】再谈矩阵的逆:判定和求逆

c00ca3cd60425efdda05ee64e344d04a.png

矩阵的逆太重要了,在本专栏之前的文章【2.3】《正式谈谈矩阵的乘法和矩阵的逆》的最后,我们介绍了矩阵逆的定义和几个重要性质,让我们复习一下:

  • 如果矩阵可逆,它的左逆和右逆相等。换句话说,如果
    ,一定有
  • 矩阵的逆是唯一的。
  • 矩阵可逆,则
    只有
    解。
  • 矩阵可逆,则
    的主元全都不为
  • 不可逆的矩阵叫奇异矩阵

随后,在【2.4】《Gauss-Jordan消元法求矩阵的逆》一文中,我们介绍了一种求矩阵逆的方法。通过【2.5】《矩阵分块相乘》的学习,我们再看Gauss-Jordan消元法的基本思想,它正是矩阵的分块相乘:


我们现在来谈谈矩阵可逆性的判别,下面都是矩阵可逆的充要条件

  1. 的主元都不为
  2. 只有零解。
  3. 的行列式不等于

第一条和第二条的必要性作为可逆矩阵的性质,已经在【2.3】《正式谈谈矩阵的乘法和矩阵的逆》中证明过,现在我们来讨论它们的充分性。关于第一条,我们可以回忆一下Gauss-Jordan消元法求矩阵逆的过程,只要所有主元都不为0,就可以顺利完成消元的过程,求得

的逆,即充分性得证。关于第二条,如果
只有零解,说明所有主元都存在,再利用刚刚证明的第一条,主元都存在说明
一定可逆,第二条的充分性也得证。

关于第三条,我们首次提到行列式的概念。这是方阵的一个很复杂的运算规则,后面有一章会专门讲解。方阵

的行列式记为
,它是一个数。目前我们只点明
矩阵
的行列式
,也记为
。 我们将会看到矩阵的逆和行列式密切相关:
。这个表达式清楚的说明了如果矩阵的行列式不为
,逆就存在;如果矩阵可逆,那么它的行列式就不能为
。充分性必要性都得证。

例:如果一个矩阵某行全都为

,则不可逆。

证明:矩阵的某行为

,意味着这行不包含主元,也就意味着主元不全,由第一条就可以判断矩阵不可逆。后面我们会学到,某行为
则行列式也为
。实际上上面三条判定准则的判定结果肯定是一致的,我们只是选择直观的判别方法。

例:如果一个矩阵包含全

列,则不可逆。

证明:矩阵某列全

,同样意味着这列没有主元,由第一条,主元不全所以不可逆。 用第二条判断准则同样很直观:
有非零解就意味着可以找到不全为
的一组系数对
的列矢量进行线性组合,使得线性组合的结果为
。因为
有一个列矢量是
,那只要让这一列的系数不为
,而其它列的系数都为
,就满足
,这也就意味着方程有非
解,
的列向量不是线性独立的。

例:如果

矩阵中某一行是另一行的
倍,那么矩阵不可逆。

证明:我们依然用主元来考虑。在高斯消元法中,如果我们用一行减去另外那行的

倍,就会得到全
的一行,也就是主元不全,由第一条可以判定矩阵不可逆。如果读者足够仔细,会质疑高斯消元法求解线性方程组的过程是按照顺序消元,不存在恰好可以用其中一行减去另外那行
倍的操作。我提示一下,你会发现即使是按照一列一列的进行消元,每列消元完成的时候那两行依然保持
倍的关系,所以在某个时刻一定会发生那两行
倍相减得到全
行。

例:如果矩阵

的第三行等于前两行之和,则
不可逆。

例证:同样考虑主元,我们以

矩阵为例。
,消去
之后,
变为
,不用管
的具体表达式,后面两行“竟然”一样了,再继续消元下去自然可以使得第三行全为
,由第一条,主元不全则可判定矩阵
不可逆。

现在我们回过头来好好思考一下为啥后两行“竟然”会一样呢?你可以动手算算,也可以用“一双慧眼”发现第三行消元其实可以分两步:先减去第一行,剩下的元素和第二行完全相同,再重复和第二行完全相同的消元步骤,剩下的元素也自然和第二行完全相同了。动手算算绝对可以帮助你拥有慧眼,只是不要止于动手算出的结果,要多想想为什么会有这样的结果。

例:如果矩阵

的第三列等于前两列之和,则
不可逆。

证:这次我们考虑第二条判别准则,

解的情况。因为第一列和第二列的和等于第三列,所以
就是
的解。既然存在非
解,矩阵就不可逆。

我们再以

矩阵为例看看主元的情况。
,完成第一列的消元之后,
,到这一步不难看得出再进行一步消元最后一行就变为全
了,如我们所料,主元不全,因此不可逆。同样的,请你思考一下第一列消元完成后为什么会"必然"变成
那种形式。

例:还记得高斯消元法中提到的行互换矩阵吧,

就是把恒等矩阵
中第
行和第
行互换。例如
矩阵
。证明任意两个行互换矩阵
相减得到的矩阵不可逆,即
不可逆。

证: 因为每个

矩阵每一行都有一个
,所以
矩阵的每一行要么是全
,要么同时有一个
一个
,所以
每一行元素的和都是
,也即
列向量的和为
有非零解
。注意,矩阵乘全
向量等于矩阵列向量的和。

例:证明如果

可逆,那么
一定可逆。

证:如果学习了行列式的知识,我们就会知道

不可逆,则
,那么
的行列式也一定不为
,所以
可逆。

我们不知道行列式的性质也没关系,我们可以用第二条判定准则。

可逆,则
只有零解。如果
有非零解
,那么根据
只有零解可得
,而
是它的非零解,和已知矛盾。

例:

为方阵,如果
可逆,那么
都可逆。

证:同样的如果学习了行列式的知识,利用

也很容易证明。

现在我们依然用第二条判定准则来考虑。

可逆,所以
只有
解。容易得到
只有
解,否则
就有非零解了,所以先得出
可逆。如果
有非零解,那么取
。因为
可逆,
非零,则
一定非零,这就和已知
只有
解矛盾了。

可以试着自己证明一下:如果

可逆,则方阵
都可逆。

回忆一下我们已经学过的求矩阵逆的方法:

  1. Gauss-Jordan消元法
  2. 矩阵有

现在我们再补充几种求矩阵逆的方法:

3. 矩阵乘法的逆

,逆的顺序和原矩阵相乘的顺序刚好相反。这很容易理解,请看:
, 再根据结合律是不是就显而易见了。

4. 转置的逆等于逆的转置:

。矩阵转置就是将一个矩阵的行变为对应的列,后面会专门介绍矩阵转置和对称矩阵,这条性质会在那时证明。

5. 另外,对一些简单的或者特殊形式的矩阵,我们可以用尝试法(trial-and-error)或者直接分析得出逆矩阵的形式。

例:回忆一下高斯消元法中的消去矩阵

。若
,它代表第二行减去第一行的5倍。我们不用计算,直接分析矩阵乘法的意义就可以得到
,即将第一行的5倍加回到第二行上,这样就可以抵消
的影响。如果
,从第三行减去第二行的4倍,则同样的
。那么如果消元的过程是
,那么从
恢复
就需要相反顺序的逆操作,也就是
,正好是
,也印证了矩阵乘法求逆的公式。

例:如果对角阵

存在逆矩阵,因为它的主元就是对角线上的元素:
, 所以它们都不为
。你可以用矩阵乘法的四种观点验证一下这个结论。

例:

;
的逆可以通过Gauss-Jordan法一步一步求得,也可以通过分析矩阵乘法的意义得到。比如
,那么
,根据矩阵乘法行的观点,自然就得到了

我们再观察一下,可以发现

,而
,从而验证了转置的逆等于逆的转置。

对角阵的逆仍为对角阵;下(上)三角矩阵的逆仍为下(上)三角矩阵,对角线上的元素如果都是

,这条性质在逆矩阵中也得以保持。
这些是很重要的结论,之后将要学习的矩阵
分解会用到这些结论。这些结论都可以用Gauss-Jordan求矩阵逆的过程验证,请读者自己想透彻。

例:如果一个矩阵和它的转置相等,这个矩阵就叫对称矩阵。

就是一个对称矩阵,用Gauss-Jordan消元法可以求得
对称矩阵的逆仍为对称矩阵。这也是容易证明的,
,逆矩阵也是对称矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值