python混淆矩阵实证分析_python评分卡之LR及混淆矩阵、ROC

import pandas as pd

import numpy as np

from sklearn import linear_model

# 读取数据

sports = pd.read_csv(r'C:\Users\Administrator\Desktop\Run or Walk.csv')

# 提取出所有自变量名称

predictors = sports.columns[4:]

# 构建自变量矩阵

X = sports.ix[:,predictors]

# 提取y变量值

y = sports.activity

# 将数据集拆分为训练集和测试集

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)

# 利用训练集建模

sklearn_logistic = linear_model.LogisticRegression()

sklearn_logistic.fit(X_train, y_train)

# 返回模型的各个参数

print(sklearn_logistic.intercept_, sklearn_logistic.coef_)

# 模型预测

sklearn_predict = sklearn_logistic.predict(X_test)

# 预测结果统计

pd.Series(sklearn_predict).value_counts()

-------------------------------------------------------------------------------------------------------------------------------------------

# 导入第三方模块

from sklearn import metrics

# 混淆矩阵

cm = metrics.confusion_matrix(y_test, sklearn_predict, labels = [0,1])

cm

Accuracy = metrics.scorer.accuracy_score(y_test, sklearn_predict)

Sensitivity = metrics.scorer.recall_score(y_test, sklearn_predict)

Specificity = metrics.scorer.recall_score(y_test, sklearn_predict, pos_label=0)

print('模型准确率为%.2f%%:' %(Accuracy*100))

print('正例覆盖率为%.2f%%' %(Sensitivity*100))

print('负例覆盖率为%.2f%%' %(Specificity*100))

-------------------------------------------------------------------------------------------------------------------------------------------

# 混淆矩阵的可视化

# 导入第三方模块

import seaborn as sns

import matplotlib.pyplot as plt

# 绘制热力图

sns.heatmap(cm, annot = True, fmt = '.2e',cmap = 'GnBu')

plt.show()

------------------------------------------------------------------------------------------------------------------------------------------

# 绘制ROC曲线

# 计算真正率和假正率

fpr,tpr,threshold = metrics.roc_curve(y_test, sm_y_probability)

# 计算auc的值

roc_auc = metrics.auc(fpr,tpr)

# 绘制面积图

plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')

# 添加边际线

plt.plot(fpr, tpr, color='black', lw = 1)

# 添加对角线

plt.plot([0,1],[0,1], color = 'red', linestyle = '--')

# 添加文本信息

plt.text(0.5,0.3,'ROC curve (area = %0.2f)' % roc_auc)

# 添加x轴与y轴标签

plt.xlabel('1-Specificity')

plt.ylabel('Sensitivity')

plt.show()

-------------------------------------------------------------------------------------------------------------------------------------------

#ks曲线   链接:https://www.jianshu.com/p/b1b1344bd99f 风控数据分析学习笔记(二)Python建立信用评分卡 - 简书

fig, ax = plt.subplots()

ax.plot(1 - threshold, tpr, label='tpr')# ks曲线要按照预测概率降序排列,所以需要1-threshold镜像

ax.plot(1 - threshold, fpr, label='fpr')

ax.plot(1 - threshold, tpr-fpr,label='KS')

plt.xlabel('score')

plt.title('KS Curve')

plt.ylim([0.0, 1.0])

plt.figure(figsize=(20,20))

legend = ax.legend(loc='upper left')

plt.show()

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p><strong><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;">作者</span></strong></p> <p><span style="color: #333333; font-family: PingFang SC, Microsoft YaHei, Helvetica Neue, Helvetica, Arial, sans-serif;"><span style="font-size: 14px;">Toby,持牌照消费金融模型专家,发明金融模型算法专利,和中科院,清华大学,百度,腾讯,爱奇艺,同盾,聚信立等平台保持长期项目合作;与国内多所财经大学有模型项目。熟悉消费金融场景业务,包括现金贷,商品贷,医美,反欺诈等。擅长Python机器学习建模,对变量筛选,衍生变量构造,变量缺失率高,正负样本不平衡,共线性高,多算法比较,调参等有良好解决方法。</span></span></p> <p> </p> <p><strong><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;">课程概述</span></strong></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;">A级优质课,360度讲解python信用评分构建流程,解决个人信用评级和企业信用评级模型的难题。课程附python代码直接使用,支持老师答疑。算法采用逻辑回归。弥补了网络上讲解不全,信息参差不齐的短板。</span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;">个人信用评级模型可自动化审批客户资质,让银行,消费金融,小额贷贷款风险最小化并将利润最大化。</span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;">企业信用评级模型可自动筛选优质企业和不良企业,为评级机构,企业融资,银行贷款,企业上市,企业并购,企业债发行提供有价值参考。</span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img style="color: #000000; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; font-size: medium;" src="https://img-bss.csdnimg.cn/202104220815029587.png" alt="" width="878" height="870" /></span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img style="color: #000000; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; font-size: medium;" src="https://img-bss.csdnimg.cn/202104220815239561.png" alt="" width="879" height="370" /></span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img style="color: #000000; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; font-size: medium;" src="https://img-bss.csdnimg.cn/202104220815398833.png" alt="" width="880" height="565" /></span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img style="color: #000000; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; font-size: medium;" src="https://img-bss.csdnimg.cn/202104220812212769.png" alt="" width="881" height="1152" /></span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img style="color: #000000; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; font-size: medium;" src="https://img-bss.csdnimg.cn/202104220812405407.png" alt="" width="882" height="751" /></span></p> <p> </p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img style="color: #000000; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; font-size: medium;" src="https://img-bss.csdnimg.cn/202104220756164829.png" alt="" width="1087" height="647" /></span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img src="https://img-bss.csdnimg.cn/202104220820327078.png" alt="" width="1090" height="608" /></span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img src="https://img-bss.csdnimg.cn/202104220757485230.png" alt="" width="1091" height="613" /></span></p> <p><img src="https://img-bss.csdnimg.cn/202104220803169362.png" alt="" width="1096" height="610" /></p> <p><img src="https://img-bss.csdnimg.cn/202104220824504970.png" alt="" width="1074" height="598" /></p> <p><img style="color: #333333; font-size: 14px;" src="https://img-bss.csdnimg.cn/202104220834523805.png" alt="" width="1072" height="603" /></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img src="https://img-bss.csdnimg.cn/202104220756459660.png" alt="" width="1094" height="612" /></span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;"><img style="color: #000000; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; font-size: medium;" src="https://img-bss.csdnimg.cn/202104220823532458.png" alt="" width="999" height="892" /></span></p> <p><span style="color: #333333; font-family: 'PingFang SC', 'Microsoft YaHei', 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 14px; background-color: #ffffff;">python金融风控评分模型和数据分析系列课</span></p> <p><img src="https://img-bss.csdnimg.cn/202104220821527128.png" alt="" width="811" height="823" /></p> <p><img src="https://img-bss.csdnimg.cn/202009140130348852.png" alt="" width="975" height="1297" /></p> <p><img src="https://img-bss.csdnimg.cn/202104220837069379.png" alt="" width="977" height="537" /></p> <p><img src="https://img-bss.csdnimg.cn/202104220843062688.png" alt="" width="960" height="675" /></p> <p><img src="https://img-bss.csdnimg.cn/202104220829476186.png" alt="" width="972" height="752" /></p> <p> </p> <p><img src="https://img-bss.csdnimg.cn/202009140131019962.png" alt="" width="976" height="1327" /></p> <p><img src="https://img-bss.csdnimg.cn/202104220828418201.png" alt="" width="976" height="541" /></p> <p> </p>
程序员的必经之路! 【限时优惠】 现在下单,还享四重好礼: 1、教学课件免费下载 2、课程案例代码免费下载 3、专属VIP学员群免费答疑 4、下单还送800元编程大礼包 【超实用课程内容】  根据《2019-2020年中国开发者调查报告》显示,超83%的开发者都在使用MySQL数据库。使用量大同时,掌握MySQL早已是运维、DBA的必备技能,甚至部分IT开发岗位也要求对数据库使用和原理有深入的了解和掌握。 学习编程,你可能会犹豫选择 C++ 还是 Java;入门数据科学,你可能会纠结于选择 Python 还是 R;但无论如何, MySQL 都是 IT 从业人员不可或缺的技能!   套餐中一共包含2门MySQL数据库必学的核心课程(共98课时)   课程1:《MySQL数据库从入门到实战应用》   课程2:《高性能MySQL实战课》   【哪些人适合学习这门课程?】  1)平时只接触了语言基础,并未学习任何数据库知识的人;  2)对MySQL掌握程度薄弱的人,课程可以让你更好发挥MySQL最佳性能; 3)想修炼更好的MySQL内功,工作中遇到高并发场景可以游刃有余; 4)被面试官打破沙锅问到底的问题问到怀疑人生的应聘者。 【课程主要讲哪些内容?】 课程一:《MySQL数据库从入门到实战应用》 主要从基础篇,SQL语言篇、MySQL进阶篇三个角度展开讲解,帮助大家更加高效的管理MySQL数据库。 课程二:《高性能MySQL实战课》主要从高可用篇、MySQL8.0新特性篇,性能优化篇,面试篇四个角度展开讲解,帮助大家发挥MySQL的最佳性能的优化方法,掌握如何处理海量业务数据和高并发请求 【你能收获到什么?】  1.基础再提高,针对MySQL核心知识点学透,用对; 2.能力再提高,日常工作中的代码换新貌,不怕问题; 3.面试再加分,巴不得面试官打破沙锅问到底,竞争力MAX。 【课程如何观看?】  1、登录CSDN学院 APP 在我的课程中进行学习; 2、移动端:CSDN 学院APP(注意不是CSDN APP哦)  本课程为录播课,课程永久有效观看时长 【资料开放】 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化。  下载方式:电脑登录课程观看页面,点击右侧课件,可进行课程资料的打包下载。
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页