序列的卷积和运算及其过程的可视化呈现_「动手学计算机视觉」第十五讲:卷积神经网络之LeNet...

更多精彩内容,请关注公众号【平凡而诗意】~ 

前言

d6334c2243da39d6647fd841572d42ce.png

提起卷积神经网络,也许可以避开VGG、GoogleNet,甚至可以忽略AleNet,但是很难不提及LeNet。

LeNet是由2019年图灵奖获得者、深度学习三位顶级大牛之二的Yann LeCun、Yoshua Bengio于1998年提出(Gradient-based learning applied to document recognition),它也被认为被认为是最早的卷积神经网络模型。但是,由于算力和数据集的限制,卷积神经网络提出之后一直都被传统目标识别算法(特征提取+分类器)所压制。终于在沉寂了14年之后的2012年,AlexNet在ImageNet挑战赛上一骑绝尘,使得卷积神经网络又一次成为了研究的热点。

近几年入门计算机视觉的同学大多数都是从AlexNet甚至更新的网络模型入手,了解比较多的就是R-CNN系列和YOLO系列,在很多知名的课程中对LeNet的介绍也是非常浅显或者没有介绍。虽然近几年卷积神经网络模型在LeNet的基础上加入了很多新的单元,在效果方面要明显优于LeNet,但是作为卷积神经网络的基础和源头,它的很多思想对后来的卷积神经网络模型具有很深的影响,因此,我认为了解一下LeNet还是非常有必要的。

本文首先介绍一下LeNet的网络模型,然后使用tensorflow来一步一步实现LeNet。

LeNet

0665b44928b5935339b487287d344805.png

上图就是LeNet的网络结构,LeNet又被称为LeNet-5,其之所以称为这个名称是由于原始的LeNet是一个5层的卷积神经网络,它主要包括两部分:

  • 卷积层
  • 全连接层

其中卷积层数为2,全连接层数为3。

这里需要注意一下,之前在介绍卷积、池化时特意提到,在网络层计数中池化和卷积往往是被算作一层的,虽然池化层也被称为"层",但是它不是一个独立的运算,往往都是紧跟着卷积层使用,因此它不单独计数。在LeNet中也是这样,卷积层块其实是包括两个单元:卷积层与池化层。

在网络模型的搭建过程中,我们关注的除了网络层的结构,还需要关注一些超参数的设定,例如,卷积层中使用卷积核的大小、池化层的步幅等,下面就来介绍一下LeNet详细的网络结构和参数。

第一层:卷积层

卷积核大小为5*5,输入通道数根据图像而定,例如灰度图像为单通道,那么通道数为1,彩色图像为三通道,那么通道数为3。虽然输入通道数是一个变量,但是输出通道数是固定的为6。

池化层中窗口大小为2*2,步幅为2。

第二层:卷积层

卷积核大小为5*5,输入通道数即为上一层的输出通道数6,输出通道数为16。

池化层和第一层相同,窗口大小为2*2,步幅为2。

第三层:全连接层

全连接层顾名思义,就是把卷积层的输出进行展开,变为一个二维的矩阵(第一维是批量样本数,第二位是前一层输出的特征展开后的向量),输入大小为上一层的输出16,输出大小为120。

第四层:全连接层

输入大小为120,输出大小为84。

第五层:全连接层

输入大小为84,输出大小为类别个数,这个根据不同任务而定,假如是二分类问题,那么输出就是2,对于手写字识别是一个10分类问题,那么输出就是10。

激活函数

前面文章中详细的介绍了激活函数的作用和使用方法,本文就不再赘述。激活函数有很多,例如Sigmoid、relu、双曲正切等,在LeNet中选取的激活函数为Sigmoid

模型构建

5d39e9aaa745a213443ca85fc08c7c6c.png

如果已经了解一个卷积神经网络模型的结构,知道它有哪些层、每一层长什么样,那样借助目前成熟的机器学习平台是非常容易的,例如tensorflow、pytorch、mxnet、caffe这些都是高度集成的深度学习框架,虽然在强化学习、图神经网络中表现一般,但是在卷积神经网络方面还是很不错的。

我绘制了模型构建的过程,详细的可以看一下上图,很多刚入门的同学会把tensorflow使用、网络搭建看成已经非常困难的事情,其实理清楚之后发现并没有那么复杂,它主要包括如下几个部分:

  • 数据输入
  • 网络模型
  • 训练预测

其中,重点之处就在于网络模型的搭建,需要逐层的去搭建一个卷积神经网络,复杂程度因不同的模型而异。训练测试过程相对简单一些,可以通过交叉熵、均方差等构建损失函数,然后使用深度学习框架自带的优化函数进行优化即可,代码量非常少。

LeNet、AlexNet、VGG、ResNet等,各种卷积神经网络模型主要的区别之处就在于网络模型,但是网络搭建的过程是相同的,均是通过上述流程进行搭建,因此,本文单独用一块内容介绍模型搭建的过程,后续内容不再介绍网络模型的搭建,会直接使用tensorflow进行编程实践。

编程实践

完整代码请查看github项目: aiLearnNotes

首先需要说明一下,后续的内容中涉及网络模型搭建的均会选择tensorflow进行编写。虽然近几年pytorch的势头非常迅猛,关于tensorflow的批评之声不绝于耳,但是我一向认为,灵活性和易用性总是成反比的,tensorflow虽然相对复杂,但是它的灵活性非常强,而且支持强大的可视化tensorboard,虽然pytorch也可以借助tensorboard实现可视化,但是这样让我觉得有一些"不伦不类"的感觉,我更加倾向于一体化的框架。此外,有很多同学认为Gluon、keras非常好用,的确,这些在tensorflow、mxnet之上进一步封装的高级深度学习框架非常易用,很多参数甚至不需要开发者去定义,但是正是因为这样,它们已经强行的预先定义在框架里了,可想而知,它的灵活性是非常差的。因此,综合灵活性、一体化、丰富性等方面的考虑,本系列会采用tensorflow进行编程实践。

其次,需要说明的是本系列重点关注的是网络模型,因此,关于数据方面会采用MNIST进行实践。MNIST是一个成熟的手写字数据集,它提供了易用的接口,方便读取和处理。

在使用tensorflow接口读取MNIST时,如果本地有数据,它会从本地加载,否则它会从官网下载数据,如果由于代理或者网速限制的原因自动下载数据失败,可以手动从官网下载数据放在MNIST目录下,数据包括4个文件,分别是:

  • train-images-idx3-ubyte.gz
  • train-labels-idx1-ubyte.gz
  • t10k-images-idx3-ubyte.gz
  • t10k-labels-idx1-ubyte.gz

它们分别是训练数据集和标签,测试数据集和标签。

可能会有人有疑问,手写体识别不是图像吗?为什么是gz的压缩包?因为作者对手写体进行了序列化处理,方便读取,数据原本是衣服单通道28*28的灰度图像,处理后是784的向量,我们可以通过一段代码对它可视化一下,

from matplotlib import pyplot as pltfrom tensorflow.examples.tutorials.mnist import input_data​mnist = input_data.read_data_sets("MNIST
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值