深度信念网络_深度信念网络(DBN)

深度信念网络(DBN)是一种概率生成模型,由多层限制玻尔兹曼机(RBM)组成。它通过无监督预训练和有监督微调提升深度学习的性能。DBN在训练时采用逐层无监督学习,解决传统深度学习的标签需求、学习速度和局部最优问题。预训练后的DBN可用于各种判别任务,如分类。DBN的拓展包括卷积DBN和堆叠自动编码器等。
摘要由CSDN通过智能技术生成

1.初识深度信念网络

深度信念网络是一个概率生成模型,与传统的判别模型的神经网络相对,生成模型是建立一个观察数据和标签之间的联合分布,对P(Observation|Label)和 P(Label|Observation)都做了评估,而判别模型仅仅而已评估了后者,也就是P(Label|Observation)。

DBNs由多个限制玻尔兹曼机(Restricted Boltzmann Machines)层组成,一个典型的网络结构如图1所示。这些网络被“限制”为一个可视层和一个隐层,层间存在连接,但层内的单元间不存在连接。隐层单元被训练去捕捉在可视层表现出来的高阶数据的相关性。

1d7a79c373eeb7f06b58132b35d4a869.png

图1

2.需要面对的问题

对于在深度神经网络应用传统的BP算法的时候,DBN遇到了以下问题:

(1)需要为训练提供一个有标签的样本集;

(2)学习过程较慢;

(3)不适当的参数选择会导致学习收敛于局部最优解。

Solution:

首先,先不考虑最顶构成一个联想记忆(associative memory)的两层,一个DBN的连接是通过自顶向下的生成权值来指导确定的,RBMs就像一个建筑块一样,相比传统和深度分层的sigmoid信念网络,它能易于连接权值的学习。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值