laydate 周_心智化我思(七)会谈技巧中 | 周励志

点击蓝字关注我们

f75e50819c49c80f8d00a1ac10f873f7.pngf75e50819c49c80f8d00a1ac10f873f7.png3cfb0dfa82d7979168f3a9e33c45c234.png

题记

MBT对于移情的处理,并非一般对于移情关系的诠释,目标并不在提供洞识,而是将案主所经验到的视为真实、准确和切合当下情境的情绪,也是受到过去影响的一种新经验,

因此鼓励案主心智化(mentalizing)当下的双方关系,让案主练习将注意力摆在治疗者的心思上;用来对照案主对自己的观点与案主以为的别人对案主的观点。

*转载☞[台湾周励志老师]系列文章,供大家学习参考.

文章原载于: facebook: 谁是科学家,艺术家,宗教家?

微博:@周励志来了

 d89cce8cb8f0f0dee88ce8234657cccd.png

心理学,说到底是一门教人好好过活的学问.

            —— 周励志

心理学者/精神科医师/心理治疗师 ... 点击[周励志来了]

827bfa6e25870ab6a47e1fc3630ac971.png

1

在整个治疗过程中,MBT治疗师一直把心思放在自己与案主的内在心智状态上,会不断如下地自问:

一、现在发生什么事?

二、案主何以现在这么说?

三、案主何以这么做?

四、我现在怎会有这种感受?

五、最近在治疗中发生何事所以导致现在这种状态?

而且要试着将自己的思考化为会谈技巧,以促进案主的自我探索,例如:

一、什么因素让您这么做?

二、您认为他怎会这么想?

三、或许您感到我误会了你?

四、您想他何以会这么对待你?

在会谈中,MBT治疗师总是努力了解正在谈论中的特定状况;在个别治疗中除了当下双方的互动外,也可能是来自生活中的重要事件;在团体治疗中,则可以是在此时此地所展现出的情境,例如,对新成员的勇于自我揭露的观感等。每次都深入单一事件,以免表浅地谈论许多事情。

当话题胶着、紧张、或陷入沉默时,治疗师的责任在于将谈话暂停下来,然后倒带过程,特别着重在探索人际互动上,必要时一再重复,强调细节,直到彼此都明白表面对话后面,谈话的人是什么样的心思。

会谈的基本目的,就是要不断刺激、开启会谈双方的心智化功能。过程中,首先要仔细倾听案主的陈述,在其中,治疗师同理可以认可的地方;所谓认可则是一种以情感为基础(affectivelybased)的介入方式,其关键在于要能与案主的内在情绪状态相遇和(contingency);

这种遇合响应(contingency responsiveness)能够增进双方的合作度,也可以降低情绪的唤醒度,案主的情绪状态就可以维持在可以被管理的范围内。

在会谈开始后的十至十五分钟左右,治疗师通常就可找到一个可以切入的焦点或事件,治疗师紧接就要详细了解细节,而且更要澄清与当下有关的彼此的情感状态,像是用「今天当我们谈到这些…,您的观点和感受如何?」来帮助案主启动心智化功能,也不断探究彼此思考与感受的流程,发展成熟的心智化功能;

让原本存放在杏仁核(Amygdala)、内隐记忆系统的早年情感经验得以被提取出来到海马回(Hippocampus)、外显记忆系统中,不断仔细回顾、探询,以让双方掌握即刻情感交换的历程。

2

MBT对于移情的处理,并非一般对于移情关系的诠释,目标并不在提供洞识,而是将案主所经验到的视为真实、准确和切合当下情境的情绪,也是受到过去影响的一种新经验,因此鼓励案主心智化(mentalizing)当下的双方关系,让案主练习将注意力摆在治疗者的心思上;用来对照案主对自己的观点与案主以为的别人对案主的观点。

或可将移情心智化分为六个步骤(Bateman, 2013; Bateman & Fonagy, 2016):

一、认可案主的移情感受,但要强调对当下经验的认可,而非来自过去的影响;

二、详细探索引发移情感受的事件细节;治疗师透过明显地大声思考(thinkingaloud)的方式来详查,同时也请案主试达到这个结论。过程中,态度必须真诚且充满真正的好奇,而且不能让案主觉得自己的观点是扭曲的、或不正确的;

三、接受移情反应中源自治疗师付诸行动(enactment)的成分,也就是说,治疗师确被卷入移情中,或多或少依照案主对治疗师的觉知来行动。

案主的经验绝大部分是奠基于现实的,虽然关联不见得显而易见,若将移情完全归因于案主或者比较容易,但却完全帮不上忙,反倒否定、不认可案主的经验。

治疗师要坦承,有部分自己的付诸行动也是出于费解释自主行动,而不能将之视为案主的扭曲所致。治疗师惟有透过展现,接受非自主行动而不去否定背后动机的态度,才有可能去探索移情的意涵。

四、与案主协同合作以达成替代观点,治疗师必须想象坐在案主旁边,而不是面对面,用意在共同注视彼此的思考和感受;能够的话,双方都采取探询的立场(inquisitive stance);

五、由治疗师摘要整理替代观点,以让案主更清楚地明白所共同达成的一种见解;

六、细心监测案主和自己对替代观点的反应,必要时再继续处理后续的反应。

3

 对移情的处理或心智化关系,惟有在心智化的脉络下才有意义,目标在于创造出对关系本身一种更为复杂的理解,不同于原本的角度,也探讨其与案主生活的关联性。

对于反移情的处理,也就是心智化反关系(Mentalizing the counter-relationship),与心智化关系正相对;可说是治疗交互式关系的另一个面相,正好用来展现一个心思如何影响另一个心思,互动过程成为关切与详细审思的主题。

举例来说,治疗师对于一位反社会人格案主的害怕,多少将会干扰到治疗的开展,当然这种害怕也可能浮现在案主其他种种关系之中;对于这种感受,治疗师就得找出一种方法让案主明白,同时也能够接受与辨识,且认定是值得探讨的。

实际的作为,Bateman和Fonagy(2016)建议透过下列步骤:

一、治疗师自己要先搞清楚自己有何感受?及这些感受与双方互动有何相关?

二、治疗师在说明自己的感受前,得先预判对于自己当下状态的平铺直述会让案主产生什么反应?

三、在对话过程中,治疗师要辨识自己所正经验到的,加以标记(mark),最后,也要监测案主对治疗师陈述的反应。

让心理学走近, 走进我们的生活;

用心理学, 为你, 为我, 为TA, 加一点温暖的力量!

往期相关:

心智化我思(七)会谈技巧<上> | 周励志

心智化我思(六)治疗策略 | 周励志

心智化我思(五)心智化的四个层面 | 周励志

俄罗斯娃娃的联想―浅谈成年期发展 | 周励志

心智化我思(四)心理治疗中的三种沟通系统<下>| 周励志

心智化我思(四)心理治疗中的三种沟通系统<中>| 周励志

心智化我思(四)心理治疗中的三种沟通系统<上>| 周励志

【依附风格之临床呈现 】 | 周励志

靠一张嘴!——情感调节与记忆重塑(下) | 周励志

靠一张嘴巴!――情感调节与记忆重塑(上) | 周励志

【开发你的情感自愈力】 | 周励志

心智化之我思 我是自己的主人<下> | 周励志

心智化之我思 我是自己的主人<上> | 周励志

心智化之我思 起源与重要性 | 周励志

心智化之我思 | 周励志

华昱心理

微信:huayu_xl2

d2b5ae6442565c48bfffacf2ed535afb.png

— 慢慢相识,来日方长 —

长按二维码关注

a7f2ba6f8b933487e80015747641624a.png
数据集概述 本数据集用于情感分析,主要针对Yelp评论,通过比较两种先进的模型——Hugging Face的bert-base-multilingual-uncased和cardiffnlp/twitter-roberta-base-sentiment-latest来分析评论中的情感表达。 模型使用 BERT Multilingual Uncased: 适用于理解多种语言,特别适合处理Yelp评论中多样的语言特性。 Twitter RoBERTa: 专门针对情感分析进行微调,擅长理解英语情感的细微差别。 构建方式 Yelp Reviews Dataset的构建基于Yelp平台上用户提交的评论数据。该数据集通过爬虫技术从Yelp网站上抓取,涵盖了多个国家和地区的餐厅、服务和商品的评论。数据收集过程中,确保了评论的完整性和真实性,同时对文本进行了预处理,包括去除HTML标签、特殊字符和停用词,以保证数据的质量和可用性。 特点 Yelp Reviews Dataset的特点在于其广泛的地理覆盖和多样的评论内容。数据集包含了数百万条评论,涵盖了从星级评价到详细文本反馈的多种信息形式。此外,该数据集还提供了用户、商家和评论之间的关联信息,使得研究者可以进行多维度的分析。评论的情感倾向和语言风格也为自然语言处理和情感分析提供了丰富的素材。 使用方法 Yelp Reviews Dataset可用于多种研究目的,包括但不限于情感分析、用户行为研究、推荐系统构建和市场分析。研究者可以通过分析评论文本,提取用户的情感倾向和偏好,进而优推荐算法或改进服务质量。此外,该数据集还可用于训练和验证自然语言处理模型,如情感分类器和文本生成模型。使用时,建议根据具体研究需求选择合适的子集和特征进行分析。 背景与挑战 背景概述 Yelp Reviews Dataset,作为在线评论平台Yelp的核心
本项目旨在开发一个基于Python的卷积神经网络(CNN)人脸识别系统,用于检测驾驶员的疲劳状态并及时发出预警。该系统主要通过分析驾驶员的面部特征,如打哈欠、眨眼和点头等行为,来判断驾驶员是否处于疲劳状态,从而提高驾驶安全性。 开发环境 IDE: PyCharm 编程语言: Python 3.6 算法: 卷积神经网络(CNN) 系统功能 本系统主要分为三个部分: 打哈欠检测:通过检测驾驶员的嘴巴张合程度来判断是否打哈欠。 眨眼检测:通过分析驾驶员的眼睛开合度和眨眼频率来判断是否疲劳。 点头检测:通过检测驾驶员的头部姿态变来判断是否疲劳。 疲劳检测原理 人在疲倦时通常会出现以下两种状态: 眨眼:正常情况下,人的眼睛每分钟大约会眨动10-15次,每次眨眼大约0.2-0.4秒。当人疲劳时,眨眼次数会增加,速度也会变慢。 打哈欠:疲劳时,人的嘴巴会张大并保持一定状态。 因此,通过检测眼睛的开合度、眨眼频率以及嘴巴的张合程度,可以判断一个人是否处于疲劳状态。 检测工具 本项目使用dlib库进行人脸检测和关键点定位。shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的模型库,能够方便地进行人脸检测和应用。 眨眼计算原理 计算眼睛的宽高比(Eye Aspect Ratio, EAR)是判断眨眼状态的关键。当人眼睁开时,EAR值较大;当人眼闭合时,EAR值较小。通过实时计算EAR值的变,可以判断驾驶员是否在眨眼。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值