字母方阵c语言,用C语言实现矩阵的运算-.doc

您所在位置:网站首页 > 海量文档

&nbsp>&nbsp计算机&nbsp>&nbspC/C++资料

7e3e25dd1884ce9b7725a69a698d5758.gif

用C语言实现矩阵的运算-.doc52页

本文档一共被下载:2377011b61454b208b34ad77b4c31088.gif次,您可全文免费在线阅读后下载本文档。

072ad097814a33d1ad18e33ca14a5a9e.png

9ec2792a743ebdf4575ee09a03c275ea.png

7af312d1be2cfc1e59f15880bb7a7e7a.png

5f207613e329ca76dc87c76d3ff77e64.png

adf7aa3071c520b8a2063089f549261c.png

下载提示

1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

2.该文档所得收入(下载+内容+预览三)归上传者、原创者。

3.登录后可充值,立即自动返金币,充值渠道很便利

目 录

第一章 绪 论1

1.1 矩阵的产生1

1.2 几种特殊的矩阵及其性质1

1.3 矩阵的应用3

第二章 矩阵的几种运算5

2.1 矩阵的加法与数乘5

2.2 矩阵的乘法6

2.3 矩阵的转置8

2.4 矩阵的逆8

2.5 矩阵的特征值10

第三章 用C语言实现矩阵运算13

3.1 算法设计分析13

3.1.1 矩阵乘法13

3.1.2矩阵的逆13

3.1.3 矩阵的三角分解14

3.1.4 矩阵的特征值15

3.1.5 稀疏矩阵迭代法16

3.2 本章小结17

结束语19

致 谢21

参考文献23

附 录25

第一章 绪 论

矩阵理论既是学习经典数学的基础,又是一门最有实用价值的数学理论。它不仅是数学的一个重要的分支,而且也已成为现代各科技领域处理大量有限维空间形式与数量关系的强有力的工具。特别是计算机的广泛应用,为矩阵理论的应用开辟了广阔的前景。

1.1 矩阵的产生

在解决众多理论研究和工程应用问题时,将其转化为线性代数的矩阵运算问题,通常是简洁高效的。有许多实际问题和数学研究对象常常可以用一张数表表示。因此,我们建立一个数学模型来统一深入的研究这种表格。

由m×n个数(i=1,2,…,m;j=1,2,…,n)排成一个m行n列的矩阵数表:

称为m×n矩阵,通常用大写字母如A,B,…或A,B,…表示,有时也记作A=或,其中(i=1,2,…,m;j=1,2,…,n)称为矩阵的第i行第j列元或(i,j)元。元都是实数的矩阵称为实矩阵:元都是复数的矩阵称为复矩阵。当m=n时,称它为n阶方阵或n阶矩阵。

1.2 几种特殊的矩阵及其性质

前面我们知道,由m×n个数(i=1,2,…,m;j=1,2,…,n)排成一个m行n列的矩阵数表:

就是m×n矩阵,元全为0的矩阵称为零矩阵,记为0;只有一行的矩阵:

A=

称为行矩阵,也称为行向量;为了避免元间的混淆,行向量也记作:

A=

只有一列的矩阵:

B=

称为列矩阵,也称为列向量。

如果两个矩阵的行数和列数相等,则称它们为同型矩阵。

设A=与B=是同型矩阵且对应元相等,则称A与B相等,记作A=B。即

A=B, i=1,2,…,m;j=1,2,…,n

如果A是n阶方阵,从左上角到右下角的对角线,称为A的主对角线;从右上角到左下角的对角线,称为A的次对角线。

称主对角线以下的元全为零的方阵:

A=

为上三角形矩阵,称主对角线以上的元全为零的方阵:

B=

为下三角形矩阵。

如果方阵的主对角线以外的元全为零,即

A=

则称它为对角矩阵,记作或。在对角矩阵中,未写出的元表示零元。

主对角线上全为1的n阶对角矩阵,即

称为n阶单位阵,记作或。

1.3 矩阵的应用

矩阵的应用非常广泛,可以说我们日常生产生活中都会应用到矩阵。

在白酒工业,成品酒的勾兑这一工序尤为重要,勾兑的目的不仅要使成品酒达到规定的酒精度,更重要的是要使成品酒中影响酒体风味的几十种主要微量成分达到预先设计好的平衡比例和具体含量。因此,使用计算机配合相关勾兑软件,就显得非常重要。如基酒及调配液的配比计算模块中,按目标含量、实际含量、调配液密度、成品密度、调配比数N类参数,依照质量守恒原理,建立起质量平衡线性方程组;且编制有行列式计算模块,可对任意阶行列式进行计算,从而改变了传统的逐次迭代算法,可直接对线性方程组进行解的存在性的判定和求解计算;小到针对单一的酒精度勾兑的配比计算,大到同时针对30种目标成分、31种基酒及调配液的调配比进行计算。

我国高速公路网络中环形结构日益增多,发展形成了复杂的网状结构,如何实现准确的收费清分就成为不得不解决的问题。由于高速公路投资费用极高 ,在实际路网中相邻节点间有两条或以上的路段直接相连的情况一般不会出现,故高速路网的结构图一般都是简单图。因此,可以定义若干矩阵,实现对高速公路网(主线、 匝道、 交叉口等) 的参数化描述。如可通过连接矩阵、属性矩阵和标识站矩阵描述高速公路的物理结构,通过规则矩阵描述收费清分规则。

第二章 矩阵的几种运算

2.1 矩阵的加法与数乘

设有两个同型的m×n矩阵A=,B=,矩阵A与B的和记作A+B,规定为:

A+B=

数k与矩阵A的乘积,简称数乘,记作kA或Ak,规定为:

kA=Ak=

矩阵的加法与数乘统称为矩阵的线性运算。

矩阵A=的负矩阵,记为-A,定义为

-A=(-1)A=()

矩阵A与B的减法,记作A-B。定义为

A-B=A+(-B)

例 2.1 设

A=,B=

求2A-3B。

解 2A-3B=2-3

=+ =

2.2 矩阵的乘法

矩阵乘法是出于研究线性方程组以及线性

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名:

验证码:

c9f2bced460b0329ba0aadbbc3f0fc71.png

匿名?

发表评论

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值