作者:朱驰
单位:上海市东方医院南院检验科
上一篇《超实用干货—检验人最常用的统计学分析方法梳理(一)》我们简单梳理了常用的比较分析的统计检验方法及数据资料类型的确定。
一般来说,两组或多组样本在比较检验时如果多项指标有显著差异,我们下一步通常会探讨引起组别产生质的差别的影响因素,即自变量对因变量的影响是否具有统计学意义。
今天我们就来梳理一下SPSS作logistic回归分析。
在做logistic回归分析前,我们要知道分析研究的自变量、因变量是什么。
首先,因变量通常为所研究的变量,可以为连续型也可为分类的变量;而自变量是用来解释或说明因变量变化的变量,可以为连续型也可为分类的变量,为一个或多个,注意,各自变量间应独立。
另外,何为回归分析?
在我们的回归分析研究中,我们要验证两个问题:
第一,自变量与因变量有没有关系?
第二,因变量与自变量之间有什么关系,具体的数据模型是什么?即模型检验和回归系数检验。
常用的三种检验方法
Wald检验——用于单个回归系数β的检验;
似然比检验——是对整个模型的可行性进行检验;
比分检验——用于变量的筛选;
在足够大的样本前提下,三者的结果大多一致;而小样本时,似然比结果更可靠,

本文介绍了SPSS中Logistic回归分析的用途、方法和区别于线性回归的特点。通过Wald、似然比和比分检验探讨自变量与因变量的关系,并详细阐述了二项分类和多项分类Logistic回归的应用,强调了回归系数和优势比在分析中的重要性。
最低0.47元/天 解锁文章
7175

被折叠的 条评论
为什么被折叠?



