python调用cplex_CPLEX in Python 帕累托最优

The Warehouse Problem

The Warehouse Problem is a well-know optimization case found in many textbooks. The problem consists,

given a set of candidate warehouse

locations

and a set of

stores

to decide which warehouse to open and

which warehouse will server which store.

Input Data

Data is provided as follows:

For each warehouse, we require a tuple (name, capacity, fixed-cost), where

name

is the unique

name of the warehouse,

capacity

is the maximum number of stores it can supply and

fixed_cost

is

the cost incurred by opening the warehouse.

For each couple (warehouse, store) a

supply_cost

which estimates the cost of supplying this store

by this warehouse.

A compact way of representing the data is a Python

dictionary

: for each warehouse tuple, list all supply

costs for all stores.

Business Decisions

The problem consists in deciding which warehouse will be open and for each store, by which warehouse it

will be supplied.

Business Constraints

Decisions must satisfy the following (simplified) business constraints:

1. Unicity: each store is supplied by one unique warehouse

2. A store can only be supplied by an

open

warehouse

3. Capacity: the number of stores supplied by a warehouse must be less than its capacity

Business Objective

The goal is to minimize the total cost incurred by the decisions, which is made of two costs:

The

Total Opening Cost

is the sum of opening costs ranging over all open warehouses.

The

Total Supply Cost

is the sum of supply costs for all the chosen (warehouse, store) pairs

To begin with, let's define a small warehouse dataset:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值