图形计算器校本教材
第一讲 幂函数阅读教材P77的具体实例(1)--(5),思考下列问题
它们的对应法则分别是什么?
以上问题中的函数有什么共同特征?
共同辨析这种新函数与指数函数的.幂函数,讨论a=1,2,3,1/2,-1时的情形。
(二) 深入探究,归纳分类
在这一环节中教师请学生尝试不同的幂函数,小组为单位,分类的方式,将他们研究的幂函数从形态上看不同的图象分别画到黑板上,在学生的相互补充、教师的及时纠错和引导下,最终得到了九种不同形态的图象.由教师补充了学生遗漏的y=x的图象,最后黑板上一共展示了十种不同形态的幂函数的图象.
心理学告诉我们:“兴趣是人们对事物的选择性态度,是积极认识某种事物或参加某种活动的心理倾向.它是学生积极获取知识形成技能的重要动力.” 兴趣之根本在于它是使得学生知识的形成是主动式的,而非传统的被动式形成;其次是使用图形计算器更能直观、形象、动态的展示知识的形成过程,在解决某些数学问题时,有利于启迪学生的思维,让学生去寻找解决问题的途径和方法。
(三)总结
1.学生提出根据幂指数的不同范围分α>1,0
(1)学生回答当α>1时,幂函数的图象具有相同的共性.
此时教师引导学生观察图象,说明α>1时的几个幂函数的图象形态并不相同.进一步引导学生发现实际上它们在第一象限图象的形态是一样的.从而提出实际上由于函数的奇偶性,我们只需考虑幂函数在第一象限内的图象规律即可,这样就大大简化了讨论的过程,这也是本节课的教学难点.
(2)在共同讨论-11,0
2.对幂函数在第一象限图象的归纳
在这一环节中教师引导学生将幂函数在第一象限不同形态的图象画出来,并请一名学生将图象画到黑板上,通过对学生所画图象的纠错与分析和学生共同归纳出幂函数在第一象限的图象与性质:
成果展示:
(四)验收成果,分享喜悦
子问题6.画出的草图.
在这一环节中,教师首先选择了学生在课堂初始时举出的一个幂函数:作为例子,引导学生画出函数的图象.
通过此例使学生进一步熟悉一般幂函数的研究方法与过程:先将分数指数幂化为根式,确定函数定义域,再根据解析式确定函数奇偶性,最后根据第一象限函数的图象特征确定函数图象.
子问题7.寻找一个幂函数使其图象类似于y=x2的图象.
学生回答y=x4,y=x10,教师引导学生寻找幂指数为分数的情形,学生给出了这个函数.通过画的图象,进一步巩固了研究幂函数的一般方法,以及幂函数图象的特征.
通过这一环节,进一步明确了研究幂函数的一般方法与过程,同时也是本节课教学效果的一个反馈.
(五)回归生活,延时探究
研究1.在固定压力差(压力差为常数)下,当气体通过圆形管道时其流量速率R与管道半径r的四次方成正比.
(1)写出函数解析式;
(2)若气体在半径为3cm的管道中,流量速率为400cm3/s,求该气体通过半径为r的管道时,其流量速率R的表达式;
(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率.
.1992年底世界人口达到54.8亿,若人口的平均增长率为x%,2008年底世界人口数为y(亿),写出:
(1)1993年底、1994年底、2000年底的世界人口数;
(2)2008年底的世界人口数y与x的函数解析式.
[我们将学到什么]
结合物理中的简谐振动,了解的实际意义;了解三角函数图象各种变换的实质和内在规律.
[为什么学习本讲内容]
让学生经历三角函数图象各种变换的探求和运用,体验各种变换的内在联系,提高学生的分析问题和解决问题的能力;在研究各种变换的过程中,让学生体验由简单到复杂、由特殊到一般的化归思想. 通过合作学习,培养学生团结协作的精神.
问题一:
用“五点法”在同一坐标系用不同颜色的线画出下列几组函数的图象(要求有列表过程):
(1),y=2sin,y=sin
(2),y=sin(+),y=sin(()
(3),y=sin2 ,y=sin
[设计意图]通过作三组不同函数的图象,进一步体会“五点法”作函数图象的基本方法,同时为本节课的图象变换做好准备.
问题二: 与有何关系?
一.创设情境,呈现问题
1.借助PPT演示物理实例:
简谐振动中,位移与时间的关系
2.介绍其中几个量的物理意义
A是物体振动时离开平衡位置的最大距离,称为振动的振幅;
是往复振动一次所需的时间,称为振动的周期;
是单位时间内往复振动的次数,称为振动的频率;
称为相位,=0的相位称为初相.
问题: 函数就是在A=1,时的特