选数洛谷c语言,洛谷 P2034 选择数字

洛谷 P2034 选择数字

Description

给定一行n个非负整数a[1]..a[n]。现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择。你的任务是使得选出的数字的和最大。

Input

第一行两个整数n,k

以下n行,每行一个整数表示a[i]。

Output

输出一个值表示答案。

Sample Input

5 2

1

2

3

4

5

Sample Output

12

Data Size

对于20%的数据,n <= 10

对于另外20%的数据, k = 1

对于60%的数据,n <= 1000

对于100%的数据,1 <= n <= 100000,1 <= k <= n,0 <= 数字大小 <= 1,000,000,000

时间限制500ms

题解:

线性dp。

正解是逆向思维。把“选数”变为“删数”。然后用单调队列优化。O(n)可过。

我很菜,没想到这种方法。所以一开始写了一个二维的dp。

正向思维。dp(i, 0)表示前i个数中,不选第i这个数的最大和;dp(i, 1)表示前i个数中,选第i这个数的最大和。转移方程显然易见(详见代码)。但是复杂度明显O(nk),过不了。卡了常数后拿到了90pts:

#include

#include

#define N 1000005

#define LL long long

#define re register

using namespace std;

LL n, k, ans;

LL a[N], sum[N];

LL dp[N][2];

LL read()

{

LL x = 0; char c = getchar();

while(c < '0' || c > '9') c = getchar();

while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();}

return x;

}

int main()

{

cin >> n >> k;

for(re LL i = 1; i <= n; i++)

a[i] = read(), sum[i] = sum[i - 1] + a[i];

for(re LL i = 1; i <= n; i++)

{

for(re LL j = i - 1; j >= i - k && j >= 0; j--)

dp[i][0] = max(dp[i][0], max(dp[j][0], dp[j][1]));

for(re LL j = i - 1; j >= i - k && j >= 0; j--)

dp[i][1] = max(dp[i][1], dp[j][0] + sum[i] - sum[j]);

}

for(re LL i = 1; i <= n; i++) ans = max(ans, max(dp[i][0], dp[i][1]));

cout << ans;

return 0;

}

TLE的问题出在哪里呢?

出在代码中的这一段:

for(int j = i - 1; j >= i - k && j >= 0; j--)

​ dp(i, 0) = max(dp(i, 0), max(dp(j, 0), dp(j, 1)));

for(int j = i - 1; j >= i - k && j >= 0; j--)

​ dp(i, 1) = max(dp(i, 1), dp(j, 0) + sum[i] - sum[j]);

可以发现,找max的过程可以用线段树维护。

具体就是开两个线段树。一个线段树维护每个位置dp(j, 0)和dp(j, 1)的最值。另一个线段树维护dp(j, 0) - sum[j]的最值。(因为sum[i]是定值,故可不用维护)

那么上面的代码就可以改写成这样:

for(int i = 1; i <= n; i++)

{

int minn = max(i - k, 0), v1, v2;

v1 = ask1(1, minn, i - 1);

dp(i, 1) = v1 + sum[i];

v2 = ask2(1, minn, i - 1);

dp(i, 0) = v2;

​ update1(1, i, i, dp(i, 0) - sum[i]);

​ update2(1, i, i, max(dp(i, 1), dp(i, 0)));

​ }

复杂度O(nlogn)。可过。

#include

#include

#define N 1000005

#define LL long long

using namespace std;

struct Tree {LL l, r, val, tag;} tree1[N * 4], tree2[N * 4];

LL n, k;

LL a[N], sum[N];

LL dp[N][2];

LL read()

{

LL x = 0; char c = getchar();

while(c < '0' || c > '9') c = getchar();

while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = getchar();}

return x;

}

void build(LL root, LL l, LL r)

{

tree1[root].l = l, tree1[root].r = r;

tree2[root].l = l, tree2[root].r = r;

if(l == r) return;

LL mid = (l + r) >> 1;

build(root << 1, l, mid);

build(root << 1 | 1, mid + 1, r);

}

void down1(LL root)

{

LL son1 = root << 1, son2 = root << 1 | 1;

tree1[son1].tag += tree1[root].tag, tree1[son2].tag += tree1[root].tag;

tree1[son1].val += tree1[root].tag, tree1[son2].tag += tree1[root].tag;

tree1[root].tag = 0;

}

void down2(LL root)

{

LL son1 = root << 1, son2 = root << 1 | 1;

tree2[son1].tag += tree2[root].tag, tree2[son2].tag += tree2[root].tag;

tree2[son1].val += tree2[root].tag, tree2[son2].tag += tree2[root].tag;

tree2[root].tag = 0;

}

LL ask1(LL root, LL l, LL r)

{

if(tree1[root].l >= l && tree1[root].r <= r) return tree1[root].val;

if(tree1[root].tag) down1(root);

LL mid = (tree1[root].l + tree1[root].r) >> 1;

if(l <= mid && r > mid) return max(ask1(root << 1, l, r), ask1(root << 1 | 1, l, r));

else if(l <= mid) return ask1(root << 1, l, r);

else if(r > mid) return ask1(root << 1 | 1, l, r);

}

LL ask2(LL root, LL l, LL r)

{

if(tree2[root].l >= l && tree2[root].r <= r) return tree2[root].val;

if(tree2[root].tag) down2(root);

LL mid = (tree2[root].l + tree2[root].r) >> 1;

if(l <= mid && r > mid) return max(ask2(root << 1, l, r), ask2(root << 1 | 1, l, r));

else if(l <= mid) return ask2(root << 1, l, r);

else if(r > mid) return ask2(root << 1 | 1, l, r);

}

void update1(LL root, LL l, LL r, LL add)

{

if(tree1[root].l >= l && tree1[root].r <= r)

{

tree1[root].tag += add, tree1[root].val += add;

return;

}

if(tree1[root].tag) down1(root);

LL mid = (tree1[root].l + tree1[root].r) >> 1;

if(l <= mid) update1(root << 1, l, r, add);

if(r > mid) update1(root << 1 | 1, l, r, add);

tree1[root].val = max(tree1[root << 1].val, tree1[root << 1 | 1].val);

}

void update2(LL root, LL l, LL r, LL add)

{

if(tree2[root].l >= l && tree2[root].r <= r)

{

tree2[root].tag += add, tree2[root].val += add;

return;

}

if(tree2[root].tag) down2(root);

LL mid = (tree2[root].l + tree2[root].r) >> 1;

if(l <= mid) update2(root << 1, l, r, add);

if(r > mid) update2(root << 1 | 1, l, r, add);

tree2[root].val = max(tree2[root << 1].val, tree2[root << 1 | 1].val);

}

int main()

{

cin >> n >> k;

for(LL i = 1; i <= n; i++)

a[i] = read(), sum[i] = sum[i - 1] + a[i];

build(1, 0, n);

for(LL i = 1; i <= n; i++)

{

LL minn = max(i - k, (LL)0), v1, v2;

v1 = ask1(1, minn, i - 1);

dp[i][1] = v1 + sum[i];

v2 = ask2(1, minn, i - 1);

dp[i][0] = v2;

update1(1, i, i, dp[i][0] - sum[i]);

update2(1, i, i, max(dp[i][1], dp[i][0]));

}

cout << ask2(1, 1, n);

return 0;

}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本方法。编译原理不仅是计算机科学理论的重要组成部分,也是实现高效、可靠的计算机程序设计的关键。本文将对编译原理的基本概念、发展历程、主要内容和实际应用进行详细介绍编译原理是计算机专业的一门核心课程,旨在介绍编译程序构造的一般原理和基本

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值