sa模型 nut nutilda怎样设置_Energetic磁滞模型参数的高效提取方法

点击标题下「中国电机工程学报」即可关注本刊微信 祝贺CSEE JPES成功被SCI收录! 提示

新增功能:点击文章底部左下角可在手机端查看论文全文啦!点击右下角“写留言”可对论文进行评论。

Energetic磁滞模型参数的高效提取方法

刘 任,李 琳

DOI:10.13334/j.0258-8013.pcsee.180372

1 项目背景   铁磁材料广泛应用于电机、互感器、电抗器、变压器等设备及器件中,对电力系统的安全高效稳定运行具有重要意义。由于铁磁材料本身具有复杂的非线性磁滞特性,而该特性作为其基本属性,对材料本身的其他性能,如功率损耗、饱和磁密等起决定性作用。因此,构建精确且高效的磁滞模型是电力设备与器件优化设计的关键所在。   从求解精度、计算效率等方面综合考虑,Energetic磁滞模型相比于其他磁滞模型,更适用于电力设备及器件的优化设计。但需要注意的是,Energetic模型的参数较多,而这些参数的准确与否直接影响该模型的求解精度。因而如何准确高效地提取Energetic模型的参数,已成为利用该模型进行磁滞建模的首要任务。   2 论文所解决的问题及意义   针对现有Energetic模型参数提取方法存在的收敛速度慢、求解精度低的问题,提出一种基于模拟退火(simulated annealing,SA)算法与Levenberg-Marquardt(L-M)混合算法的Energetic模型参数提取方法,其综合SA算法全局搜索能力强,以及L-M算法局部收敛速度快的优点。

1)混合算法的构建

SA算法是基于蒙特卡罗迭代求解策略的一种随机优化算法。该算法适用于求解不同的非线性复杂问题,不仅具有较强的鲁棒性、收敛性、隐含并行性和广泛的适应性,并且不需要任何的辅助信息,对目标函数和约束函数没有任何要求,能处理不同类型的优化设计变量(离散、连续和混合型)。虽然该算法局部寻优能力较差,但具有较强的全局搜索能力。

而L-M算法则属于一种确定性优化算法,通常也被称之为阻尼最小二乘算法。该算法是梯度下降法与高斯牛顿法两者的综合体,同时具有求解精度高和收敛速度快的独特优势。然而,与其他确定性优化算法类似,它对初始值的选取较为敏感。因此,只有当Energetic模型参数的初始值选取在全局最优解所在区域附近时,L-M算法才能展现出求解精度高、收敛速度快的优越性能。

因此,可借鉴随机性优化算法——SA算法与确定性优化算法——L-M算法各自的优势,将Energetic模型参数的提取问题转化为最小二乘拟合优化问题,提出一种基于SA与L-M混合算法的Energetic模型参数辨识方法,以此实现该模型参数的精确高效提取。如图1所示,在混合算法迭代初期,采用SA算法快速锁定全局最优解所在区域;而后,根据引入的普适性混合算法切换过渡准则,将SA算法当前最优解赋予L-M算法;L-M算法在接收到SA算法提供的最优解后,将其作为初始值,快速收敛于全局最优解。

eab951e4-fd17-eb11-8da9-e4434bdf6706.png

图1  基于SA与L-M混合的Energetic磁滞模型参数提取方法

2)混合算法的验证

首先以一个参数预先已知的Energetic模型作为基准磁滞模型,并利用该模型仿真生成一条基准磁滞回线,从而基于该基准模型的磁滞回线,比较SA算法与混合算法的求解精度和收敛速度,仿真结果如图2和表1所示;其次,利用实验室的BROCKHAUS-MPG200电工钢测量系统测取硅钢片的磁滞回线,仿真及实验结果如图3和表2所示。

eeb951e4-fd17-eb11-8da9-e4434bdf6706.png

(a)基于SA算法优化的磁滞回线与基准曲线对比 

f2b951e4-fd17-eb11-8da9-e4434bdf6706.png

(b)基于混合算法优化的磁滞回线与基准曲线对比

图2  基于SA与L-M混合的Energetic磁滞模型参数提取方法

表1  SA算法与混合算法收敛速度对比

f5b951e4-fd17-eb11-8da9-e4434bdf6706.png

fab951e4-fd17-eb11-8da9-e4434bdf6706.png

(a)基于SA算法优化的磁滞回线与基准曲线对比   

fcb951e4-fd17-eb11-8da9-e4434bdf6706.png

(b)基于混合算法优化的磁滞回线与基准曲线对比

图3  基于SA与L-M混合的Energetic磁滞模型参数提取方法

表2  SA与混合算法收敛速度及提取结果对比

fdb951e4-fd17-eb11-8da9-e4434bdf6706.png

上述结果表明,该文所提混合算法同时具有收敛速度快、提取精度高的优异性能,可实现Energetic模型参数的准确快速辨识。

3 结论    1)混合算法在迭代初期,SA算法快速锁定全局最优解所在区域;当SA算法满足切换准则时,其将当前最优解赋予L-M算法;继而L-M算法将该解作为初始值,快速收敛于全局最优解。仿真及实验表明,混合算法相比于传统SA算法,同时具有求解精度高、收敛速度快的优点。

2)在利用L-M算法求解的Energetic模型最优参数时,首先将该模型参数的灵敏度函数矩阵进行归一化处理,并推导适用于Energetic模型参数提取的归一化L-M算法,有效避免传统L-M算法产生的病态矩阵问题,极大提高L-M算法的收敛速度与求解精度。

  3)该混合算法不仅适用于Energetic模型参数的提取,而且适用于J-A模型,同时也可用于其他最小二乘优化问题的求解,具有一定的理论及实践指导意义。  

引文信息

刘任,李琳.基于模拟退火与Levenberg-Marquardt混合算法的Energetic磁滞模型参数提取[J].中国电机工程学报,2019,39(3):875-884.

Liu Ren, Li Lin. Parameter extraction for energetic hysteresis model based on the hybrid algorithm of simulated annealing and levenberg–marquardt[J]. Proceedings of the CSEE, 2019, 39(3): 875-884(in Chinese).

作者简介

01ba51e4-fd17-eb11-8da9-e4434bdf6706.png

  华北电力大学电磁与超导研究所李琳老师团队主要研究方向为电磁场数值计算方法及其应用、电力系统电磁兼容、先进输变电技术等。已负责完成国家科技支撑计划子课题1项、国家自然科学基金面上项目3项。现承担国家重点研发计划1项、国家自然科学基金面上项目1项。已在《IEEE Trans. on Mag.》、《中国电机工程学报》等国际国内著名学术刊物发表SCI/EI论文70余篇。

  李 琳(1962-),教授,博导,省级教学名师。在美国佛罗里达大学国际雷电研究中心作访问学者1年。出版《电磁场》教材1部,合作出版学术专著1部,获省级科技进步二等奖1项。

  刘 任(1990-),博士研究生,主要研究方向为新型软磁材料高频磁化及损耗机理。

声明

本文为原创作品,所涉文字及图片版权均属中国电机工程学报编辑部所有,根据国家版权局最新规定,纸媒、网站、微博、微信公众号转载、摘编我编辑部的作品,务必请提前联系我编辑部。个人请按本微信原文转发、分享 

联系我们                    

电话: 010-82812972

邮箱: pcsee@epri.sgcc.com.cn;

       pcsee_1964@163.com  

网址: www.pcsee.org  

主办:中国电机工程学会

官方微信号: PCSEE1964

04ba51e4-fd17-eb11-8da9-e4434bdf6706.jpeg

欢迎关注英文刊CSEEJPES微信:

07ba51e4-fd17-eb11-8da9-e4434bdf6706.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值