python 向量_关于Python中的向量相加和numpy中的向量相加效率对比

# -*-coding:utf-8-*-

#向量相加

def pythonsum(n):

a = range(n)

b = range(n)

c = []

for i in range(len(a)):

a[i] = i**2

b[i] = i**3

c.append(a[i]+b[i])

return a,b,c

print pythonsum(4),type(pythonsum(4))

for arg in pythonsum(4):

print arg

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36])

[0, 1, 4, 9]

[0, 1, 8, 27]

[0, 2, 12, 36]

def numpysum(n):

a = np.arange(n) ** 2

b = np.arange(n) ** 3

c = a + b

return a,b,c

(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36]))

[0 1 4 9]

[ 0 1 8 27]

[ 0 2 12 36]

size = 1000

start = datetime.now()

c = pythonsum(size)

delta = datetime.now() - start

# print 'The last 2 elements of the sum',c[-2:]

print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000

start1 = datetime.now()

c1 = numpysum(size)

delta1 = datetime.now() - start1

# print 'The last 2 elements of the sum',c1[-2:]

print 'numpySum elapsed time in microseconds',delta1.microseconds

pythonSum elapsed time in microseconds 1000

numpySum elapsed time in microseconds 0

08-10 6614
09-29 9791
04-14 2万+
04-12 3万+
12-04 553
03-05 331
03-03 2万+
04-09 6045
06-23 1万+
08-09 608
03-14 1万+
06-13 1280