python 向量_关于Python中的向量相加和numpy中的向量相加效率对比

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-

#向量相加

def pythonsum(n):

a = range(n)

b = range(n)

c = []

for i in range(len(a)):

a[i] = i**2

b[i] = i**3

c.append(a[i]+b[i])

return a,b,c

print pythonsum(4),type(pythonsum(4))

for arg in pythonsum(4):

print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36])

[0, 1, 4, 9]

[0, 1, 8, 27]

[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):

a = np.arange(n) ** 2

b = np.arange(n) ** 3

c = a + b

return a,b,c

(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36]))

[0 1 4 9]

[ 0 1 8 27]

[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000

start = datetime.now()

c = pythonsum(size)

delta = datetime.now() - start

# print 'The last 2 elements of the sum',c[-2:]

print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000

start1 = datetime.now()

c1 = numpysum(size)

delta1 = datetime.now() - start1

# print 'The last 2 elements of the sum',c1[-2:]

print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000

numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页