关于贝特朗奇论的一点思考
贝特朗奇论这个名字就很奇怪,我最开始以为是贝特朗奇的某个论点或者命题,但是百度了一下发现原来是贝特朗(Bertrand)的“奇论”,最初用以批判当时尚不严谨的概率论,并将概率论引向公理化。
贝特朗奇论是指:在单位圆内随机地取一条弦,其长超过该圆内接等边三角形的边长√3的概率等于多少?有如下三个解法:
1.将弦的一段固定在等边三角形的某一个顶点上,然后另一端绕着圆周旋转。可以在图一中发现,只有当另一端点位于上方的圆弧时,这条弦的长度才会超过三角形的边长,由此可得所求概率为1/3。
2.根据几何学原理,圆内弦的长度与弦到圆心的距离有关。从图二可以看出,当弦心距小于1/2时,这条弦的长度大于三角形边长,所以这样求出的概率为1/2。
3.再来考虑一条弦的中点,根据图三可以得出:只有当弦的中点位于半径为1/2的小圆内部时这条弦的长度才满足要求,同时因为这个小圆的面积是大圆的1/4,所以所求概率也是1/4。
(不放图了)
这个问题其实本来也没有很特别,不是很难于理解。同一个问题有三个不同的解是因为语词有一定的模糊性,模糊的界定得到模糊的概率。“作弦”这个词本身是一个结果性的动作,而没有涉及过程。不同的过程去达到这个结果成功的可能性自然有所差别,而如果能明确规定过程,那么概率也就能明确确定。比如我达到某目标可以有三种方法,成功概率分别为20%,40%,80%,但是如果问“我做成这件事的概率是多少?”是不明确也没有意义的,只有明确用哪种方法的概率才是明确的。
但这个问题还是引发了一点点的思考。下面一些想法可能在以后会学到,百度上似乎也有一些文章写相关的问题。
首先是如何确定参数。取什么参数为随机实际上决定了试验方法。方法一以与圆周上另一端点的相对位置为随机变量(等价于弦切角为随机变量,后面会写为什么),方法二以弦心距为唯一的随机变量,方法三以弦中点的位置为随机变量,实际上涉及x,y两个变量。一个变量分布在一维的线上,两个变量要用几何概型表示。方法三涉及两个变量因此用了几何概型的面积比来计算,布丰投针的实验中针的分布也涉及两个变量,也动用了几何概型和微积分表示面积再做除法来计算。
均匀分布问题。我觉得这是一个很核心的问题。选取不同的变量,在变量均匀变化的同时,因变量的变化规律并不一定相同。
先举一个例子,假设一条直线l与线外一点A,过A做l的垂线,垂足H,我们观察该点与线上一点点B连线的长度变化的规律。现在同样面临如何取参数的问题。第一种方法是取BH均匀变化,这样可以由勾股定理得到AB长度;第二种方法是去角BAH均匀变化,这时AB长度为AH除以角BAH的余弦。显然,两种方法取变量并让变量均匀变化时因变量变化是不一样的。现在类似的构造和贝特朗奇论类似的问题,我们如果再要计算AB>2AH,就会发现这和贝特朗奇论实际上完全是一个问题。
但再延伸一点,可以发现如果A在l上,l不是一条直线而是一个半圆弧时,角的均匀变化等效于点在圆弧上的均匀变化,这也是为什么说方法一圆周上另一端点的相对位置为随机变量等价于弦切角为随机变量。
在百度上看到一些文章写某某方法不正确,其实主要是认为该方法没有保证按某个要求均匀分布,但我又没有理由保证必须要用哪个变量均匀分布。我觉得没有足够的理由反驳哪种方法是错误的。
最后一个问题是,我们能不能通过实验来确定这个概率是多少。这也是一个矛盾的问题。试图用实验来确定这个“概率”就等于是事先承认有一个理念化的绝对的概率存在,它不以人为转移。然而在实际处理的时候,我们又不得不选用一定的方法。如果我们试图用计算机模拟实验,我们random的实际上是状态参数,但以哪个参数为随机变量就涉及了方法的问题。另外还可以设想在地上画一个圆,然后随机地往地上扔一些直线来与圆相交成弦。我觉得这样看似合理,但实际上只是理想试验,人不可能“随机地”扔一些直线(但这个问题还是困扰着我)。
By MiltonDeng
384

被折叠的 条评论
为什么被折叠?



