R-CNN:使用自己的数据训练 Faster R-CNN 的 ResNet-50 模型

人工智能 专栏收录该内容
28 篇文章 4 订阅

上次使用 Faster R-CNN 训练了一个 VGG-16 的网络,为了再提升识别的准确率,利用 ResNet 网络在同样的数据上面训练了多一次。


基本的过程和在训练 VGG-16 网络时差不多,可参照 使用自己的数据训练 Faster R-CNN 的 VGG-16 模型

一、训练网络

(一)下载 ResNet-50 的 prototxt 文件

在我的 Github 上面可以下载我使用的文件,当然你也可以使用不同的 ResNet 网络结构。

(二)相关文件修改

1. cd $FRCN_ROOT/lib/rpn/generate_anchors.py

# 在 37 行:
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
                     scales=2**np.arange(3, 6)):
# 修改为:
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
                     scales=2**np.arange(1, 6)):

2. cd $FRCN_ROOT/lib/rpn/anchor_target_layer.py

# 在 28 行:
        anchor_scales = layer_params.get('scales', (8, 16, 32))
# 修改为:
        anchor_scales = layer_params.get('scales', (2, 4, 8, 16, 32))

3. cd $FRCN_ROOT/lib/rpn/proposal_layer.py

# 在 29 行:
        anchor_scales = layer_params.get('scales', (8, 16, 32))
# 修改为:
        anchor_scales = layer_params.get('scales', (2, 4, 8, 16, 32))

4. pascal_voc.py、imdb.py、train.prototxt、test.prototxt、.pt文件 的修改参考 使用自己的数据训练 Faster R-CNN 的 VGG-16 模型

5. 因为我们使用了 5 个尺度的 anchors,所以之前的 9 个 anchors 变成了 3*5=15 个。
修改 prototxt 和 pt文件,将其中的 18 换成 30。

layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 30   # 2(bg/fg) * 9(anchors)    ///将 18 换成 30
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }

(三)下载 ImageNet 模型

下载 ImageNet 预训练文件:ResNet-50.v2.caffemodel

(四)清除缓存

删除缓存文件:
$FRCN_ROOT/data/VOCdevkit2007/annotations_cache/annots.pkl
$FRCN_ROOT/data/cache 下的 pkl 文件
如果不清除缓存可能会报错。

(五)开始训练

参照 VGG16 的训练命令:
cd $FRCN_ROOT

./experiments/scripts/faster_rcnn_end2end.sh 0 ResNet-50 pascal_voc

注意:第三个参数 ‘ResNet-50’,一定要和你的文件夹名字对应,比如我的文件放在$FRCN_ROOT/models/pascal_voc/ResNet-50 里面,所以我的第三个参数就为我目录的名称。


由于 ResNet-50 的网络更深,训练的时间也需要更久,每一次迭代大约需要 0.5s ,训练这个网络我用了大概 10 个小时,但效果会比用 VGG 16 的好,主要是对小尺度的物体检测更加准确了。

这是我训练时各类的 AP :

  • 4
    点赞
  • 48
    评论
  • 29
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值