将列表列表转换为具有多种数据类型的numpy数组

文章介绍了如何将一个包含字符串和浮点数的嵌套列表转换为numpy的结构化数组,可以通过指定dtype来实现,如S5,S5,i,f,或者使用dtype=object创建对象数组。

问题:
我有一个从文件中读取的列表的列表。 每个内部列表的长度为6个元素,并具有3个字符串和5个浮点数。 如何将列表列表转换为numpy数组? 谢谢!


回答:

您需要一个结构化数组,该数组具有复合dtype:

清单示例清单:

In [4]: ll = [['one','two',1,1.23],['four','five',4,34.3],['six','seven',4,34.3]]

尝试创建一个常规数组,生成一个字符串数组:

In [5]: np.array(ll)
Out[5]:
array([['one', 'two', '1', '1.23'],
       ['four', 'five', '4', '34.3'],
       ['six', 'seven', '4', '34.3']],
       dtype='|S5')

但是,如果我指定一个包含两个字符串,一个int和一个float的dtype,则会得到一个一维结构化数组:

In [8]: np.array([tuple(x) for x in ll],dtype='S5,S5,i,f')
Out[8]:
array([('one', 'two', 1, 1.2300000190734863),
       ('four', 'five', 4, 34.29999923706055),
       ('six', 'seven', 4, 34.29999923706055)],
      dtype=[('f0', 'S5'), ('f1', 'S5'), ('f2', '<i4'), ('f3', '<f4')])

请注意,我必须将内部列表转换为元组。这就是结构化数组获取其输入以及显示它的方式。它有助于将结构化的"行"与常规(2d)阵列的统一"行"区分开。

从csv文件读取时,与genfromtxt或loadtxt生成的结构化数组相同。

还有其他指定dtype的方法,还有几种其他将数据加载到这样的数组中的方法。但这是一个开始。

进一步的测试(https://stackoverflow.com/a/47774915/901925)显示此元组转换并不那么费时。简单地创建数组会花费更多时间。


补充:
我有同样的问题,但是元组是没有解决方案的。所以我发现(python 3.7.1):

ll = [['one','two',1,1.23],['four','five',4,34.3],['six','seven',4,34.3]]

np.array(ll, dtype = 'object')

结果:

array([['one', 'two', 1, 1.23],
   ['four', 'five', 4, 34.3],
   ['six', 'seven', 4, 34.3]], dtype=object)
Python列表转换NumPy数组非常简单,只需要使用 `numpy.array()` 函数即可。这是最常用且最直接的方法。 ### 示例代码: ```python import numpy as np # 一维列表转为NumPy数组 list_1d = [1, 2, 3, 4, 5] arr_1d = np.array(list_1d) print(arr_1d) # 输出: [1 2 3 4 5] print(type(arr_1d)) # 输出: <class 'numpy.ndarray'> ``` ```python # 二维列表转为二维NumPy数组(例如矩阵) list_2d = [[1, 2, 3], [4, 5, 6]] arr_2d = np.array(list_2d) print(arr_2d) # 输出: # [[1 2 3] # [4 5 6]] print(arr_2d.shape) # 输出: (2, 3) ``` ```python # 三维列表也可以转换 list_3d = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] arr_3d = np.array(list_3d) print(arr_3d.shape) # 输出: (2, 2, 2) ``` --- ### 可选参数:指定数据类型 你还可以在转换时指定数组数据类型,比如 `int32`, `float64` 等: ```python arr_float = np.array([1, 2, 3], dtype=float) print(arr_float) # 输出: [1. 2. 3.] arr_int = np.array([1.5, 2.6, 3.7], dtype=int) print(arr_int) # 输出: [1 2 3] —— 小数部分被截断 ``` --- ### 注意事项 - 所有元素会被自动转换成**统一类型**(根据 NumPy 类型提升规则)。 - 如果列表嵌套不规则(如每行长度不同),生成的数组将是 `dtype=object` 的一维数组,无法进行数值计算: ```python jagged_list = [[1, 2], [3, 4, 5]] arr_jagged = np.array(jagged_list) print(arr_jagged) # 输出: [list([1, 2]) list([3, 4, 5])] print(arr_jagged.dtype) # 输出: object —— 不推荐用于数值运算 ``` > ✅ 建议:确保输入的嵌套列表是“矩形”的(每行长度一致),以便生成有效的多维数组。 --- ### 解释 `np.array()` 是 NumPy 提供的核心函数之一,它能将任何**序列类对象**(如 list、tuple、嵌套列表等)转换为高效的 `ndarray` 对象。一旦转换完成,就可以使用 NumPy 提供的所有数学运算、广播机制和索引功能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值