一、序列化/反序列化
python中内置了很多序列化/反序列化的方式,最常用的有json、pickle、marshal这三种,示例用法如下:
import json
import pickle
import marshal
author1 = {"name": "菩提树下的杨过", "blog": "http://yjmyzz.cnblogs.com/", "title": "架构师", "pets": ["dog", "cat"]}
# json序列化
json_str = json.dumps(author1)
print("json=>\n", json_str)
# json字符串反序列化
author2 = json.loads(json_str)
# pickle序列化
pickle_str = pickle.dumps(author1)
print("pickle=>\n", pickle_str)
# pickle字符串反序列化
author3 = pickle.loads(pickle_str)
# marshal序列化
marshal_str = marshal.dumps(author1)
print("marshal=>\n", marshal_str)
# marshal反序列化
author4 = marshal.loads(marshal_str)
print("\n",
id(author1), "\n",
id(author2), "\n",
id(author3), "\n",
id(author4), "\n",
author1, "\n",
author2, "\n",
author3, "\n",
author4)
with open("json.txt", "w") as file1:
json.dump(author1, file1)
with open("pickle.txt", "wb") as file2:
pickle.dump(author1, file2)
with open("marshal.txt", "wb") as file3:
marshal.dump(author1, file3)
输出:
json=>
{"name": "\u83e9\u63d0\u6811\u4e0b\u7684\u6768\u8fc7", "blog": "http://yjmyzz.cnblogs.com/", "title": "\u67b6\u6784\u5e08", "pets": ["dog", "cat"]}
pickle=>
b'\x80\x03}q\x00(X\x04\x00\x00\x00nameq\x01X\x15\x00\x00\x00\xe8\x8f\xa9\xe6\x8f\x90\xe6\xa0\x91\xe4\xb8\x8b\xe7\x9a\x84\xe6\x9d\xa8\xe8\xbf\x87q\x02X\x04\x00\x00\x00blogq\x03X\x1a\x00\x00\x00http://yjmyzz.cnblogs.com/q\x04X\x05\x00\x00\x00titleq\x05X\t\x00\x00\x00\xe6\x9e\xb6\xe6\x9e\x84\xe5\xb8\x88q\x06X\x04\x00\x00\x00petsq\x07]q\x08(X\x03\x00\x00\x00dogq\tX\x03\x00\x00\x00catq\neu.'
marshal=>
b'\xfb\xda\x04name\xf5\x15\x00\x00\x00\xe8\x8f\xa9\xe6\x8f\x90\xe6\xa0\x91\xe4\xb8\x8b\xe7\x9a\x84\xe6\x9d\xa8\xe8\xbf\x87\xda\x04blog\xfa\x1ahttp://yjmyzz.cnblogs.com/\xda\x05title\xf5\t\x00\x00\x00\xe6\x9e\xb6\xe6\x9e\x84\xe5\xb8\x88\xda\x04pets[\x02\x00\x00\x00\xda\x03dog\xda\x03cat0'
4307564944
4309277360
4307565016
4309277432
{'name': '菩提树下的杨过', 'blog': 'http://yjmyzz.cnblogs.com/', 'title': '架构师', 'pets': ['dog', 'cat']}
{'name': '菩提树下的杨过', 'blog': 'http://yjmyzz.cnblogs.com/', 'title': '架构师', 'pets': ['dog', 'cat']}
{'name': '菩提树下的杨过', 'blog': 'http://yjmyzz.cnblogs.com/', 'title': '架构师', 'pets': ['dog', 'cat']}
{'name': '菩提树下的杨过', 'blog': 'http://yjmyzz.cnblogs.com/', 'title': '架构师', 'pets': ['dog', 'cat']}
注:api的方法名还是很好记的,dump/dumps意为“倒垃圾”,把对象向xxx里一倒,就算序列化完成了。反之load/loads即从字符串或文件中装载(还原)对象。特别要值得一提的是:pickle、marshal存在安全问题,如果装载的字符串或文件里,包含有精心设计的恶意代码,会让恶意代码执行(关于反序列化的漏洞,大家可以上网查一下,有很多类似的介绍)。另外从序列化后的字符串大小来看,默认情况下,就本示例而言,json序列化后的字符串长度最小,so,综合来看,推荐同学们使用json序列化/反序列化。
二、深拷贝、浅拷贝
import copy
list_1 = [1, 2, 3, [4, 5]]
list_2 = copy.copy(list_1) # 浅拷贝
list_3 = copy.deepcopy(list_1) # 深拷贝
list_2[3][0] = 99
print("\n", list_1, "\n", list_2, "\n", list_3)
list_3[3][1] = 100
print("\n", list_1, "\n", list_2, "\n", list_3)
输出:
[1, 2, 3, [99, 5]]
[1, 2, 3, [99, 5]]
[1, 2, 3, [4, 5]]
[1, 2, 3, [99, 5]]
[1, 2, 3, [99, 5]]
[1, 2, 3, [4, 100]]
当一个对象里的子元素本身也是复杂元素时,浅拷贝不会为这种复杂的子元素生成全新的实例,但深拷贝可以。下面的内存分布示意图有助于大家理解:
list_2是list_1浅拷贝生成的对象,对于第4个元素,都是指向同一个列表[4,5],所以list_2修改了[4,5]中的第1个元素为99后,list_1也受到影响。list_3则是深拷贝的结果,所有元素都是独立的新实例,因此修改list_3里的任何元素,都不会影响list_1、list_2
参考文档: