python解初中题_用 python 解 NOIP 竞赛题

该博客介绍了如何使用Python解决一道数学竞赛题,题目涉及找寻两个互素面值货币无法组合成的最大金额。通过编写程序,作者展示了找寻规律和确定不可组合金额的过程,并发现了一个公式c=a*b-a-b。文章强调了Python在解决此类问题上的便捷性,并鼓励读者尝试更多数据验证规律。
摘要由CSDN通过智能技术生成

以下为2017年全国 NOIP 提高组复赛的第1题:

2115d21cf282?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

image.png

2115d21cf282?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

image.png

--------------------------------------- 问题展示完毕 -----------------------------------------

怎么样,读完题是不是感觉特别懵。—— 我是谁,我在哪里?

接下来我们来慢慢解析这道让人摸不着头脑的竞赛题。

一、首先翻译一下题的意思:

假设,现在人民币只有两个币种,面值你定

对面值数字的要求是这两个数字不能有公约数(除1这个公约数外)

例如:2和5

问用这两个面值的钱,不能凑齐的最大的价钱是多少

当然,前提是你有任意多的钱

是不是稍微要清晰一些了呢。

二、那我们接下来用python写一个程序来完成这道题:

整个过程分两步:

第一步:借助 python 找规律划范围

# 先找出能凑出来的金额

def myFunc(a, b): # 输入a,b 两个互素的面值

c = 1 # 从1开始找出能凑出的金额

while True: # 不断循环,电脑配置低的,请远离,前方危险

for i in range(c):

an01 = a * i

for j in range(c):

an02 = b * j

if an01 + an02 == c: # 一旦找到能凑出当前金额c的i和j,打印出来

print(c, "=", a, '*', i, '+', b, '*', j)

c += 1 # 金额不断上涨,上不封顶

if __name__ == "__main__":

myFunc(3, 5)

结果:

2115d21cf282?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

image.png

如果将面值设置为7,5

结果:

2115d21cf282?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

image.png

再如果换成 7,9

结果:

2115d21cf282?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

image.png

综上:

我们可以发现,不可组合的面值均集中在靠前的位置,但有多靠前,具体又在哪个位置呢?

我们姑且假定这个数字就在 两数的乘积 之内,而且事实也是这样的。大家可以多试几对数字,检验一下。

二、范围找到后,我们再来考虑用 python 找出范围内的不可组合的金额值:

备注:上面的程序是一个死循环,需要手动结束程序,建议不懂操作的小伙伴谨慎运行,但下面这个程序就不一样了,小伙伴们尽管去运行吧。

# 找出两数乘积范围内的可组合数据

def myFunc(a, b):

c = a * b

my_list = [] # 创建存放所有组合出来的金额值

# 找寻过程 -- 不断对比

for i in range(0, c):

an01 = a * i

for j in range(c):

an02 = b * j

if an01 + an02 <= c: # 只找在乘积范围内的组合,节省运算次数

my_list.append(an01 + an02) # 将符合的金额添加进目标列表

return list(set(sorted(my_list))) # 返回经过去重和排序的目标列表

# 找到最大的那个不能组合的金额

def getMax(a, b):

my_list = myFunc(a, b) # 调用找可拼凑数据函数得到目标列表

my_list.sort(reverse=True) # 将目标列表反序排列

# 判断目标列表是否连续,并输出断点数中的最大值

y = my_list[0] + 1 # 创建对比参数

for x in my_list:

if x + 1 != y:

print(x, y)

break

y = x

return y - 1 # 返回最大断点值

if __name__ == "__main__":

print(getMax(16, 27))

结果为:

2115d21cf282?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation

image.png

不知道大家有没有发现一个问题,这个最大不可组合数据似乎有一定的规律,规律为:

c = a * b - a - b

( 其中的a 和 b 为你输入的两个互为素数的币种面值,c为它们不能组合的金额 )

大家可以多试几组数据,验证一下。

怎么样,通过两个程序,我们就很容易的解决了这个看起来不那么友好的竞赛题。

此时,是不是觉得 python 很酷呢!

笔者会不定时的更新一些跟python相关又和数学相关的一些有趣的程序,喜欢就关注我吧。

特别警示:本文为作者原创作品,禁止不经过本人同意就将其转载用于商业用途,否则将予以追究。

处于学习分享转载请附上出处链接,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值