这篇文章主要介绍了使用Python判断质数(素数)的简单方法讲解,经常被用来做科学计算的Python处理这种小问题当然手到擒来^_-需要的朋友可以参考下
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。 前几天偶尔的有朋友问python怎么判断素数的方法,走网上查了查,总结了python脚本判断一个数是否为素数的几种方法:
1.运用python的数学函数
import math
def isPrime(n):
if n <= 1:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
2.单行程序扫描素数
from math import sqrt
N = 100
[ p for p in range(2, N) if 0 not in [ p% d for d in range(2, int(sqrt(p))+1)] ]
运用python的itertools模块
from itertools import count
def isPrime(n): www.jb51.net
if n <= 1:
return False
for i in count(2):
if i * i > n:
return True
if n % i == 0:
return False
3.不使用模块的两种方法方法1:
def isPrime(n):
if n <= 1:
return False
i = 2
while i*i <= n:
if n % i == 0:
return False
i += 1
return True
方法2:
def isPrime(n):
if n <= 1:
return False
if n == 2:
return True
if n % 2 == 0:
return False
i = 3
while i * i <= n:
if n % i == 0:
return False
i += 2
return True
eg:求出20001到40001之间的质数(素数)既然只能被1或者自己整出,那说明只有2次余数为0的时候,代码如下:
#!/usr/bin/python
L1=[]
for x in xrange(20001,40001):
n = 0
for y in xrange(1,x+1):
if x % y == 0:
n = n + 1
if n == 2 :
print x
L1.append(x)
print L1
结果如下:
20011
20021
20023
20029
20047
20051
20063
20071
20089
20101
20107
20113
20117
20123
20129
20143
20147
20149
20161
20173
….
更多使用Python判断质数(素数)的简单相关文章请关注PHP中文网!
本文原创发布php中文网,转载请注明出处,感谢您的尊重!