反射
1.通过字符串的形式导入模块
2.通过字符串的形式,去模块中寻找指定函数并执行
'''def f1():
return 'F1'
def f2():
return 'F2''''
#假设上面的是一个叫user的py文件里面的内容
#import user # user不是一个字符串,是一个文件名,无法通过字符串的形式导入
DO=__import__('user') #通过字符串的形式导入模块,'user'是个字符串,实现了反射的第一个功能。
r=DO.f1()print(r) #输出 F1
r=getattr(DO,'f1') #在模块DO中找到名字叫做f1的函数,括号中的f1是一个字符串,返回f1函数的地址
print(r()) #输出F1,通过在r的后面加个括号来执行函数,r是一个函数地址,这就实现了反射的第二个功能。#hasattr 判断模块中是否存在字符串形式的函数#setattr(DO,'AGE',8) 给一个模块设置一个全局变量#setattr(DO,'AGE',lambda a:a+1) 给一个模块设置一个函数,后面的是lambda表达式#delattr 删除某一模块中的函数或者变量#总结:反射就是根据字符串的形式去对象(某个模块)中操作其成员,模块是对象其中的一种。
面向对象
如果函数写在类里面就叫做方法,类名后面加个括号就是创建一个对象,面向对象不是所有情况都适用。
self是一个形式参数,python内部传递,obj=Foo() 创建obj为Foo的一个实例,obj.fetch('bb'),调用Foo中的fetch方法,这个过程默认self=obj,是一个地址,创建对象时会首先执行类中的__init__方法,他有个特殊的方法叫做构造方法。
__del__解释器销毁对象时候自动调用,特殊的名字:析构方法。
封装:使用场景,当同一类型的方法具有相同的参数,直接封装在对象中,把类当作模板创建多个对象(对象内封装的数据可以不一样)
继承:派生类和基类都有,优先在派生类中找,python类中可以同时继承多个类,先是自己,再是从左到右继承。
多态:多种形态,python语言特性本身支持多态,扩展:重载(函数名相同,参数个数不相同,python不支持,重写:派生类中重新实现基类的方法。)
查找源码的过程(self.XXXX(),从底层开始找)
执行父类的构造方式:super(当前类,self).init() 父类.__init__(self,XXX)
快速判断类执行和对象执行,self,对象调用,无self,类调用。
classProvice:
country='china'#静态字段存在类中
def __init__(self,name):
self.Name=name#Name存在对象中
@property#特性,加上这个,表示创建一个特性,将方法伪造成为了一个字段
#特性方法不能再传任何参数,除了self,用来获取
defend(self):
temp='%s end' %self.Nameprint(temp)
@end.setter#表示可以给end设置值,传给value并打印出来,用来设置,但end和上面的特性end必须名字一样。
defend(self,value):print(value)defstart(self):
temp='%s start' %self.Nameprint(temp)def show(self):#普通方法存在类中,但普通对象可通过指针调用
print('输出地方')print(self.Name,Provice.country)#访问静态字段时用类.静态字段访问,如果是
#对象自己的成员,则用自己去访问,自己的对象.自己的成员,除了类中的方法。
@classmethod#类方法
def xxoo(cls): #类方法必须要有一个cls参数,全称是class,通过类去访问,参数是当前类的类名
print('xxoo')print(cls)
@staticmethod#只要用这个一装饰,下面的方法将变为静态方法,没有self
#静态方法属于类,执行时,用类名加方法,不用传参数,对象也可以访问,但推荐用类进行访问。
def Xo():#可以有任何参数,但调用时需要一一给它传递,只是不需要self了。
print('xo')#普通方法执行时必须先需要创建对象,但静态方法不需要创建对象就直接可以去执行。
henan=Provice('河南')
henan.show()
Provice.xxoo()
ret=Provice('HAHA')
ret.start()
ret.end#调用特性方法时不需要在加括号,用来获取。
ret.end='浅浅'#去执行带有 @end.setter下面的end函数,可用来修改。
成员修饰符
前面加__(两个下划线),则在外面拿不到,只能在类内部访问,在子类中也不能访问,但可以通过间接访问,通过方法。什么都不加是公有的,在外面可以访问。
在一个对象后面加括号会执行__call__方法。相当于在类后面加两个括号Foo()()会执行__call__方法。对象后面加[]会执行__getitem__方法。对象.__dict__获取对象中所有的字段。__doc__注释,print(对象)直接能输出结果是因为执行了类中的__str__方法。
断言一般用于测试
单例模式
当所有实例中封装的数据都相同时,用单例模式
#单例模式----
classConnectionPool:__instance=Falsedef __init__(self):#创建连接池需要用到的东西
self.ip='1.1.1.1'self.port=3306self.pwd='123123'self.username='xxxx'self.conn_list=[1,2,3,4,5,6,7,8,9,10]#创建10个链接线
@staticmethoddefget_instance():if ConnectionPool.__instance:#如果以前创建过了,还返回以前那个,不会重新创建
return ConnectionPool.__instance
else:#创建一个对象并将对象赋值给静态字段__instance
ConnectionPool.__instance=ConnectionPool()return ConnectionPool.__instance
defget_connection(self):#获取连接
importrandom
r=random.randrange(1,11)#随机获取一个链接线
returnr
pool1=ConnectionPool.get_instance()
pool2=ConnectionPool.get_instance()print(pool1,pool2)#输出结果一样,地址一样,说明只是一个对象,避免了重复创建,单例模式#<__main__.ConnectionPool object at 0x000001EE554C9198> <__main__.ConnectionPool object at 0x000001EE554C9198>
网络编程
socket基于TCP、IP(套接字) 客户端 服务端,所有的客户端都去连接服务端,服务端先运行起来,ip、port(端口)等待别人来链接
socketserver 并发处理多个客户端请求,使用:1、创建类,必须继承2、handle方法 3、server_forever
进程
优点:利用电脑的多核优势(能够同时进行多个操作) 缺点:浪费计算机的资源内存(重新开辟内存空间),进程不是越多越好,cpu个数=进程个数最好。
线程
优点:共享内存,IO操作时能够创造并发操作。缺点:抢占资源,线程也不是越多越好,具体案例具体分析,请求上下文切换耗时。
进程和线程目的:提高执行效率。
在计算机中执行任务的最小单元是线程。Io操作不利用cpu,IO密集型需要多线程,计算密集型需要用多进程
GIL 全局解释器锁
importthreadingimporttimedeffunc1():print('111')deffunc2(a1,a2):
time.sleep(1)
func1()print('a1+a2=%d'%(a1+a2))
t1=threading.Thread(target=func2,args=(123,111,))#args传入的是一个元组,创建的是一个子线程#子线程是由主线程创建的,这个程序从上开始执行,当遇到这行代码时,会创建一个子线程
t1.setDaemon(True)#设置主线程执行完之后等不等待子线程,默认是等待,改成True后将不等待,如果不等待,主线程将会#执行完创建下面三个子线程后就执行完了,并不会等待子线程去执行func2函数
t1.start()#让创建的线程开始执行#t1.join()#让这个线程不再并发执行,会等到这个线程执行完毕,再执行下面的内容,当传入参数时,会表示最多等几秒
t1.join(2) #下面的代码最多等这个线程2秒,如果没有执行完成,也会继续执行下面的内容,如果这个线程如果没有执行完,会再后台继续执行,但不会等着他
t2=threading.Thread(target=func2,args=(123,111,))#args传入的是一个元组,创建的是一个子线程
t2.start()#让创建的线程开始执行
t3=threading.Thread(target=func2,args=(123,111,))#args传入的是一个元组,创建的是一个子线程
t3.start()#让创建的线程开始执行
线程锁
python内部没有提供线程池,需要自定义 数据共享 m=Manger() dic=m.dict(),进程池python已经提供
上下文管理
#with open (xx) as ss 原理是用上下文管理来实现的。
importcontextlib
@contextlib.contextmanager#用于上下文管理
defmyopen(file_path,mode):
f=open(file_path,mode,encoding='utf-8')try:yield f#执行到这一步会把f拿出来 赋给as后面的对象
finally:
f.close()
with myopen('XXX.txt','r') as file_obj:print(file_obj.readline())#执行任务,等所有的任务执行完成时,才执行finally后面的内容
css
1.首先找到那个标签,2.对那个标签进行操作