python算术表达式生成列表_python 中的列表解析和生成表达式 - 转

优雅、清晰和务实都是python的核心价值观,如果想通过操作和处理一个序列(或其他的可迭代对象)来创建一个新的列表时可以使用列表解析( List comprehensions)和生成表达式,通过这两个操作,我们可以看到这三个观点是如何在python中和谐统一起来的。

列表解析

在需要改变列表而不是需要新建某列表时,可以使用列表解析。列表解析表达式为:

[exprforiter_variniterable] [exprforiter_variniterableifcond_expr]

第一种语法:首先迭代iterable里所有内容,每一次迭代,都把iterable里相应内容放到iter_var中,再在表达式中应用该iter_var的内容,最后用表达式的计算值生成一个列表。 第二种语法:加入了判断语句,只有满足条件的内容才把iterable里相应内容放到iter_var中,再在表达式中应用该iter_var的内容,最后用表达式的计算值生成一个列表。

举例如下:

>>>L=[(x+1,y+1)forxinrange(3)foryinrange(5)]>>>L [(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (2,5), (3,1), (3,2), (3,3), (3,4), (3,5)]

>>>N=[x+10forxinrange(10)ifx>5]>>>N [16,17,18,19]

newlist=[x+5forxinolderlistifx>10]

一个更复杂的例子:

>>> num = [j for i in range(2, 8) for j in range(i*2, 50, i)] >>> num [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 10, 15, 20, 25, 30, 35, 40, 45, 12, 18, 24, 30, 36, 42, 48, 14, 21, 28, 35, 42, 49]

>>>words='The quick brown fox jumps over the lazy dog'.split()>>>words ['The','quick','brown','fox','jumps','over','the','lazy','dog']>>>stuff=[[w.upper(), w.lower(), len(w)]forwinwords]>>>foriinstuff:printi

['THE','the',3] ['QUICK','quick',5] ['BROWN','brown',5] ['FOX','fox',3] ['JUMPS','jumps',5] ['OVER','over',4] ['THE','the',3] ['LAZY','lazy',4] ['DOG','dog',3]

上述代码的map()实现:

>>>stuff=map(lambdaw: [w.upper(), w.lower(), len(w)], words)>>>foriinstuff: ...printi ... ['THE','the',3] ['QUICK','quick',5] ['BROWN','brown',5] ['FOX','fox',3] ['JUMPS','jumps',5] ['OVER','over',4] ['THE','the',3] ['LAZY','lazy',4] ['DOG','dog',3]

生成器表达式

生成器表达式是在python2.4中引入的,当序列过长, 而每次只需要获取一个元素时,应当考虑使用生成器表达式而不是列表解析。生成器表达式的语法和列表解析一样,只不过生成器表达式是被()括起来的,而不是[],如下:

(exprforiter_variniterable) (exprforiter_variniterableifcond_expr)

例:

>>>L=(i+1foriinrange(10)ifi%2)>>>Lat0xb749a52c>>>>L1=[]>>>foriinL: ...     L1.append(i) ...>>>L1 [2,4,6,8,10]

生成器表达式并不真正创建数字列表, 而是返回一个生成器,这个生成器在每次计算出一个条目后,把这个条目“产生”(yield)出来。 生成器表达式使用了“惰性计算”(lazy evaluation,也有翻译为“延迟求值”,我以为这种按需调用call by need的方式翻译为惰性更好一些),只有在检索时才被赋值( evaluated),所以在列表比较长的情况下使用内存上更有效。A generator object in python is something like a lazy list. The elements are only evaluated as soon as you iterate over them.

一些说明:

1. 当需要只是执行一个循环的时候尽量使用循环而不是列表解析,这样更符合python提倡的直观性。

foriteminsequence:     process(item)

2. 当有内建的操作或者类型能够以更直接的方式实现的,不要使用列表解析。

例如复制一个列表时,使用:L1=list(L)即可,不必使用:

L1=[xforxinL]

3. 当序列过长, 而每次只需要获取一个元素时,使用生成器表达式。

4. 列表解析的性能相比要比map要好,实现相同功能的for循环效率最差(和列表解析相比差两倍)。

5. 列表解析可以转换为 for循环或者使用map(其中可能会用到filter、lambda函数)表达式,但是列表解析更为简单明了,后者会带来更复杂和深层的嵌套。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值