近年来,关联规则、聚类分析、贝叶斯网络、神经网络、复杂网络分析等数据挖掘技术为名老中医学术思想传承工作提供了新的方法学基础[。但对许多中医背景的传承人来说,数据挖掘作为多学科交叉的新产物难以熟练运用[。
针对这一现状,为探寻更加实用、高效的数据挖掘方法,本研究组基于复杂网络分析和关联规则分析创建“组方配伍网络分析法”,对天津中医药大学张伯礼教授治疗胸痹的处方进行可视化网络重建及用药规律分析。总结出的重点药物、治法及学术特点,与相关文献[结论基本一致,得到了张教授本人认可。
1 总体思路
相关研究
为体现中医思维,在挖掘组方思路时,借助复杂网络分析软件记录药物的录入顺序,模拟传统师承的“抄方学习模式”,以体现专家遣方用药思路的连续性、系统性;在挖掘配伍思路时,借助关联规则分析法,以获得不同药物间具体的配伍概率。最终,整合两类数据构建“组方配伍网络”,既能从纵向体现组方思路,又能从横向展示配伍关系。
2 研究方法
2.1 数据来源
张伯礼教授的处方数据调取自天津中医药大学附属保康医院门诊系统(2016年),具体内容包括:数据入库顺序、就诊时间、处方编号、患者编号、患者姓名、录入药物、录入顺序、药物剂量、用药周期、ICD诊断名、诊断备注、药物金额及医师姓名。
2.2 处方纳入标准
纳入标准定为:1)ICD诊断名为“胸痹”。2)无第二诊断。3)无其他诊断备注。
按上述标准,共369个胸痹处方被纳入。
2.3 处方排除标准
为保证研究结论能够体现组方思路的连续性,排除标准如下:1)处方药物录入起始序号不为1。2)处方药物录入顺序不连续(缺项)。
最终